Microbial Ecology

, Volume 58, Issue 3, pp 569–581 | Cite as

Genetic Diversity of Eukaryotic Plankton Assemblages in Eastern Tibetan Lakes Differing by their Salinity and Altitude

  • Qinglong L. Wu
  • Antonis Chatzinotas
  • Jianjun Wang
  • Jens Boenigk
Microbiology of Aquatic Systems


Eukaryotic plankton assemblages in 11 high-mountain lakes located at altitudes of 2,817 to 5,134 m and over a total area of ca. one million square kilometers on the Eastern Tibet Plateau, spanning a salinity gradient from 0.2 (freshwater) to 187.1 g l−1 (hypersaline), were investigated by cultivation independent methods. Two 18S rRNA gene-based fingerprint approaches, i.e., the terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis (DGGE) with subsequent band sequencing were applied. Samples of the same lake type (e.g., freshwater) generally shared more of the same bands or T-RFs than samples of different types (e.g., freshwater versus saline). However, a certain number of bands or T-RFs among the samples within each lake were distinct, indicating the potential presence of significant genetic diversity within each lake. PCA indicated that the most significant environmental gradient among the investigated lakes was salinity. The observed molecular profiles could be further explained (17–24%) by ion percentage of chloride, carbonate and bicarbonate, and sulfate, which were also covaried with change of altitude and latitude. Sequence analysis of selected major DGGE bands revealed many sequences (largely protist) that are not related to any known cultures but to uncultured eukaryotic picoplankton and unidentified eukaryotes. One fourth of the retrieved sequences showed ≤97% similarity to the closest sequences in the GenBank. Sequences related to well-known heterotrophic nanoflagellates were not retrieved from the DGGE gels. Several groups of eukaryotic plankton, which were found worldwide and detected in low land lakes, were also detected in habitats located above 4,400 m, suggesting a cosmopolitan distribution of these phylotypes. Collectively, our study suggests that there was a high beta-diversity of eukaryotic plankton assemblages in the investigated Tibetan lakes shaped by multiple geographic and environmental factors.


Canonical Correspondence Analysis Terminal Restriction Fragment Length Polymorphism Terminal Restriction Fragment Length Polymorphism Analysis Erhai Lake Terminal Restriction Fragment Length Polymorphism Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Xiangdong Yang, Xingqi Liu, and Weilang Xia for their assistance in sampling of the lakes, Hongxi Pang for water chemistry analysis, Verena Jaschik for excellent support of the T-RFLP analysis, Song Xiaolan for counting of phytoplankton, and Li Jing for enumeration of ciliates. The NSFC (grant 30770392), the National Basic Research Program of China (2008CB418104), and FWF project (P19706) funded the research.


  1. 1.
    Abdo Z, Schuette UME, Bent SJ, Williams CJ, Forney LJ, Paul J (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938PubMedCrossRefGoogle Scholar
  2. 2.
    Auguet JC, Casamayor EO (2008) A hotspot for cold crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10:1080–1086PubMedCrossRefGoogle Scholar
  3. 3.
    Berninger UG, Finlay B, Kuuppo-Leinikki P (1991) Protozoan control of bacterial abundances in freshwater. Limnol Oceanogr 36:139–146Google Scholar
  4. 4.
    Blumthaler M, Ambach W, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol B 39:130–134CrossRefGoogle Scholar
  5. 5.
    Boenigk J, Jost S, Stoeck T, Garstecki T (2007) Differential thermal adaptation of clonal strains of a protist morphospecies originating from different climatic zones. Environ Microbiol 9:593–602PubMedCrossRefGoogle Scholar
  6. 6.
    Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A (2006) Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol 72:5159–5164PubMedCrossRefGoogle Scholar
  7. 7.
    Bowman TE (1986) Freshwater calanoid copepods of the West Indies. Syllogeus 58:237–246Google Scholar
  8. 8.
    Caron DA (2005) Introductory remarks: advances in the molecular ecology of protists. J Eukaryot Microbiol 52:81–82PubMedCrossRefGoogle Scholar
  9. 9.
    Caron DA, Gast RJ, Lim EL, Dennett MR (1999) Protistan community structure: molecular approaches for answering ecological questions. Hydrobiologia 401:215–227CrossRefGoogle Scholar
  10. 10.
    Casamayor EO, Massana R, Benlloch S, Øvreas L, Diez B, Goddard VJ, Gasol JM, Join I, Rodriguez-Valera F, Pedros-Alio C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multi-pond solar saltern. Environ Microbiol 4:338–348PubMedCrossRefGoogle Scholar
  11. 11.
    Cervantez-Martínez A, Elias-Gutierrez M, Gutierrez-Aguirre MA, Kotov AA (2005) Ecological remarks on Mastigodiaptomus nesus Bowman, 1986(Copepoda: Calanoida) in a Mexican karstic sinkhole. Hydrobiologia 542:95–102CrossRefGoogle Scholar
  12. 12.
    Countway PD, Gast RJ, Dennett MR, Savai P, Rose JM, Caron DA (2007) Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ Microbiol 9:1219–32PubMedCrossRefGoogle Scholar
  13. 13.
    Countway PD, Gast RJ, Savai P, Caron DA (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol 52:95–106PubMedCrossRefGoogle Scholar
  14. 14.
    Diez B, Pedros-Alio C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951PubMedCrossRefGoogle Scholar
  15. 15.
    Diez B, Pedros-Alio C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941PubMedCrossRefGoogle Scholar
  16. 16.
    Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol 2:399–410PubMedGoogle Scholar
  17. 17.
    Fawley MJ, Fawley KP, Buchheim MA (2004) Molecular diversity among communities of freshwater Microchlorophytes. Microb Ecol 48:489–499PubMedCrossRefGoogle Scholar
  18. 18.
    Gast RJ, Dennett MR, Caron DA (2004) Characterization of protistan assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:2028–2037PubMedCrossRefGoogle Scholar
  19. 19.
    Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater. American Public Health Association, WashingtonGoogle Scholar
  20. 20.
    Ihaka R, Gentleman R (1996) R: A Language for Data Analysis and Graphics. J Comput Graph Stat 5:299–314CrossRefGoogle Scholar
  21. 21.
    Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremephiles 2:191–200CrossRefGoogle Scholar
  22. 22.
    Lara E, Berney C, Harms H, Chatzinotas A (2007) Cultivation-independent analysis reveals a shift in ciliate 18S rRNA gene diversity in a polycyclic aromatic hydrocarbon polluted soil. FEMS Microbiol Ecol 62:365–373PubMedCrossRefGoogle Scholar
  23. 23.
    Lefranc M, Thenot A, Lepere C, Debroas D (2005) Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71:5935–5942PubMedCrossRefGoogle Scholar
  24. 24.
    Lepère C, Boucher D, Jardillier L, Domaizon I, Debroas D (2006) Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin) Appl. Envir Microbiol 2006(72):2971–2981Google Scholar
  25. 25.
    Lim EL, Dennett MR, Caron DA (2001) Molecular identification of heterotrophic nanoflagellates by restriction fragment length polymorphism analysis of small subunit ribosomal DNA. J Eukaryot Microbiol 48:247–257PubMedCrossRefGoogle Scholar
  26. 26.
    Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522PubMedGoogle Scholar
  27. 27.
    Logares R, Daugbjerg N, Boltovskoy A, Kremp A, Laybourn-Parry J, Rengefors K (2008) Recent evolutionary diversification of a protist lineage. Environ Microbiol 10:1231–1243PubMedCrossRefGoogle Scholar
  28. 28.
    Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764PubMedCrossRefGoogle Scholar
  29. 29.
    Lopez-Garcia P, Rodriquez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep sea Antarctic plankton. Nature 409:603–607PubMedCrossRefGoogle Scholar
  30. 30.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  31. 31.
    Ma YH, Zhang WZ, Xue YF, Zhou PJ, Ventosa A, Grant WD (2004) Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremephiles 8:45–51CrossRefGoogle Scholar
  32. 32.
    Massana R, Balague V, Guillou L, Pedros-Alio C (2004) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches, FEMS Microbiol. Ecol 50:231–243Google Scholar
  33. 33.
    Massana R, Guillou L, Díez B, Pedro´s-Alio C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558PubMedCrossRefGoogle Scholar
  34. 34.
    Maturrano L, Santos F, Rossello-Mora R, Anton J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895PubMedCrossRefGoogle Scholar
  35. 35.
    Moon-van der Staay SY, Wachter RD, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unexpected eukaryotic diversity. Nature 409:607–610PubMedCrossRefGoogle Scholar
  36. 36.
    Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. p. 1–27. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer, DordrechtGoogle Scholar
  37. 37.
    Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155PubMedGoogle Scholar
  38. 38.
    Pérez MT, Sommaruga R (2007) Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure. Environ Microbiol 9:2200–2210PubMedCrossRefGoogle Scholar
  39. 39.
    Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–947CrossRefGoogle Scholar
  40. 40.
    Richards TA, Vepritskiy AA, Gouliamova DE, Nierzwicki-Bauer SA (2005) The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol 7:1413–1425PubMedCrossRefGoogle Scholar
  41. 41.
    Schabereiter-Gurtner C, Pinar G, Lubitz W, Rolleke S (2001) Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. J Microbiol Methods 47:345–354PubMedCrossRefGoogle Scholar
  42. 42.
    Slapeta J, Moreira D, Lopez-Garcia P (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc R Soc Ser B 272:2073–2081CrossRefGoogle Scholar
  43. 43.
    Sommaruga R (2001) The role of solar UV radiation in the ecology of alpine lakes. J Photochem Photobiol 62:35–42CrossRefGoogle Scholar
  44. 44.
    Sommaruga R, Oberleiter A, Psenner R (1996) Effect of UV radiation on the bacterivory of a heterotrophic nanoflagellate. Appl Environ Microbiol 62:4395–4400PubMedGoogle Scholar
  45. 45.
    Suarez-Morales E, Reid JW, Fiers F, Iliffe TM (2004) Historical biogeography and distribution of the freshwater cyclopine copepods (Copepoda, Cyclopoida, Cyclopinae) of the Yucatan Peninsula, Mexico. J Biogeogr 31:1051–1063CrossRefGoogle Scholar
  46. 46.
    ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289CrossRefGoogle Scholar
  47. 47.
    Thum RA (2004) Using 18S rDNA to resolve diaptomid copepod (Copepoda: Calanoida: Diaptomidae) phylogeny: an example with the North American genera. Hydrobiologia 519:135–141CrossRefGoogle Scholar
  48. 48.
    Van Hannen EJ, Van Agterveld MP, Gons HJ, Laanbroek HJ (1998) Revealing genetic diversity of eukaryotic microorganisms in aquatic environments by denaturing gradient gel electrophoresis. J Phycol 34:206–213CrossRefGoogle Scholar
  49. 49.
    Vinebrooke RD, Leavitt PR (1999) Differential responses of littoral communities to ultraviolet radiation in an alpine lake. Ecology 80:223–237Google Scholar
  50. 50.
    Wang S, Dou H (1998) Lakes in China. Science, BeijingGoogle Scholar
  51. 51.
    Weisse T (2003) Pelagic microbes—Protozoa and the microbial food web. In: O’Sulliva PE, Reynolds CS (eds) The lakes handbook. Blackwell, Oxford, pp 417–460CrossRefGoogle Scholar
  52. 52.
    Wetzel RG (2001) Limnology. Academic, San DiegoGoogle Scholar
  53. 53.
    Wu QL, Boenigk J, Hahn MW (2004) Successful predation of filamentous bacteria by a nanoflagellate challenges current models of flagellate bacterivory. Appl Environ Microbiol 70:332–339PubMedCrossRefGoogle Scholar
  54. 54.
    Wu QL, Schauer M, Kamst-Van Agterveldand MP, Zwart G, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau. China Appl Environ Microbiol 72:5478–5485CrossRefGoogle Scholar
  55. 55.
    Yang XD, Kamenik C, Schimidt R, Wang SM (2003) Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes. J Paleolimnol 30:1–19CrossRefGoogle Scholar
  56. 56.
    Zheng D, Yao TD (2005) Uplifting of Tibetan Plateau with its environmental effects. Science, Beijing (in Chinese)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography & Limnology, Chinese Academy of SciencesNanjingPeople’s Republic of China
  2. 2.Department of Environmental MicrobiologyUFZ, Helmholtz Centre for Environmental ResearchLeipzigGermany
  3. 3.Institute for LimnologyAustrian Academy of SciencesMondseeAustria

Personalised recommendations