Microbial Ecology

, Volume 58, Issue 2, pp 350–362

Denitrifying Bacterial Community Composition Changes Associated with Stages of Denitrification in Oxygen Minimum Zones

  • A. Jayakumar
  • G. D. O’Mullan
  • S. W. A. Naqvi
  • B. B. Ward
Original Article

Abstract

Denitrification in the ocean is a major sink for fixed nitrogen in the global N budget, but the process is geographically restricted to a few oceanic regions, including three oceanic oxygen minimum zones (OMZ) and hemipelagic sediments worldwide. Here, we describe the diversity and community composition of microbes responsible for denitrification in the OMZ using polymerase chain reaction, sequence and fragment analysis of clone libraries of the signature genes (nirK and nirS) that encode the enzyme nitrite reductase, responsible for key denitrification transformation steps. We show that denitrifying assemblages vary in space and time and exhibit striking changes in diversity associated with the progression of denitrification from initial anoxia through nitrate depletion. The initial denitrifying assemblage is highly diverse, but succession on the scale of 3–12 days leads to a much less diverse assemblage and dominance by one or a few phylotypes. This progression occurs in the natural environment as well as in enclosed incubations. The emergence of dominants from a vast reservoir of rare types has implications for the maintenance of diversity of the microbial population and suggests that a small number of microbial dominants may be responsible for the greatest rates of transformations involving nitrous oxide and global fixed nitrogen loss. Denitrifying blooms, driven by a few types responding to episodic environmental changes and distributed unevenly in time and space, are consistent with the sampling effect model of diversity–function relationships. Canonical denitrification thus appears to have important parallels with both primary production and nitrogen fixation, which are typically dominated by regionally and temporally restricted blooms that account for a disproportionate share of these processes worldwide.

References

  1. 1.
    Aarssen LW (1997) High productivity in grassland ecosystems: affected by species diversity or productive species? Oikos 80:183–184CrossRefGoogle Scholar
  2. 2.
    Bange HW, Andreae MO, Lal S, Law CS, Naqvi SWA, Patra PK, Rixen T, Upstill-Goddard RC (2001) Nitrous oxide emissions from the Arabian Sea: a synthesis. Atmos Chem Phys 1:61–71Google Scholar
  3. 3.
    Bange HW, Naqvi SWA, Codispoti LA (2005) The nitrogen cycle in the Arabian Sea. Progress in Oceanography 65:145–158CrossRefGoogle Scholar
  4. 4.
    Braker G, Zhou JZ, Wu LY, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities. Applied and Environmental Microbiology 66:2096–2104PubMedCrossRefGoogle Scholar
  5. 5.
    Brettar I, Rheinheimer G (1992) Influence of carbon availability on denitrification in the Central Baltic Sea. Limnol Oceanogr 37:1146–1163Google Scholar
  6. 6.
    Capone DG, Burns JA, Montoya JP, Subramaniam A, Mahaffey C, Gunderson T, Michaels AF, Carpenter EJ (2005) Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Glob Biogeochem Cycles 19:GB2024CrossRefGoogle Scholar
  7. 7.
    Carpenter JH (1965) The Chesapeake Bay Institute Technique for the Winkler dissolved oxygen method. Limnology and Oceanography 10:141–143Google Scholar
  8. 8.
    Codispoti L, Brandes J, Christensen J, Devol A, Naqvi S, Paerl H, Yoshinari T (2001) The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci Mar 65:85–105CrossRefGoogle Scholar
  9. 9.
    Codispoti LA, Yoshinari T, Devol AH (2005) Suboxic respiration in the oceanic water columm. In: del Giorgio PA, Williams PJL (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 225–247CrossRefGoogle Scholar
  10. 10.
    Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP (2007) Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445:163–167PubMedCrossRefGoogle Scholar
  11. 11.
    Devol AH (1978) Bacterial oxygen uptake kinetics as related to biological processes in oxygen deficient zones of the oceans. Deep-Sea Res 25:137–146CrossRefGoogle Scholar
  12. 12.
    Devol AH, Uhlenhopp AG, Naqvi SWA, Brandes JA, Jayakumar DA, Naik H, Gaurin S, Codispoti LA, Yoshinari T (2006) Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone. Deep-Sea Res 53:1533–1547CrossRefGoogle Scholar
  13. 13.
    Ferguson RL, Buckley EN, Palumbo AV (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55PubMedGoogle Scholar
  14. 14.
    Garfield PD, Packard TT, Friederich GE, Codispoti LA (1983) A subsurface particle maximum layer and enhanced microbial activity in the secondary nitrite maximum of the northeastern tropical Pacific Ocean. J Mar Res 41:747–768CrossRefGoogle Scholar
  15. 15.
    Goering JJ (1968) Denitrification in oxygen minimum layer of eastern tropical Pacific Ocean. Deep-Sea Res 15:157–164Google Scholar
  16. 16.
    Grasshof K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, Vol. Verlag Chemie GmbH, WeinheimGoogle Scholar
  17. 17.
    Heck KL, Belle Bv, Simberloff D (1975) Explicit calculation of thee rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459–1461CrossRefGoogle Scholar
  18. 18.
    Holland SM (2001) Analytic Rarefaction 1.3, Vol. University of Georgia, Athens, GAGoogle Scholar
  19. 19.
    Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: Statistical approaches to estimating microbial diversity. Applied and Environmental Microbiology 67:4399–4406PubMedCrossRefGoogle Scholar
  20. 20.
    Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460CrossRefGoogle Scholar
  21. 21.
    Jayakumar DA, Francis CA, Naqvi SWA, Ward BB (2004) Diversity of nitrite reductase genes (nirS) in the denitrifying water column of the coastal Arabian Sea. Aquat Microb Ecol 34:69–78CrossRefGoogle Scholar
  22. 22.
    Jayakumar A, Naqvi, S.W.A and Ward B.B. Distribution and Relative Quantification of key Genes Involved in Fixed Nitrogen Loss From the Arabian Sea Oxygen Minimum Zone. (in press, AGU monograph—‘Indian Ocean Biogeochemical Processes and Ecological Variability’)Google Scholar
  23. 23.
    Korner H, Zumft WG (1989) Expression of denitrification enzymes in response to the dissolved-oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 55:1670–1676PubMedGoogle Scholar
  24. 24.
    Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Jorgensen BB, Jetten MSM (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of the United States of America 102:6478–6483CrossRefGoogle Scholar
  25. 25.
    Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings Of The National Academy Of Sciences Of The United States Of America 104:7104–7109PubMedCrossRefGoogle Scholar
  26. 26.
    Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  27. 27.
    McCune G, Grace JB (2002) Analysis of ecological communities, Vol. MjM Software Design, Gleneden Beach, OR, USAGoogle Scholar
  28. 28.
    Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810PubMedCrossRefGoogle Scholar
  29. 29.
    Morrison JM, Codispoti LA, Smith SL, Wishner K, Flagg C, Gardner WD, Gaurin S, Naqvi SWA, Manghnani V, Prosperie L, Gundersen JS (1999) The oxygen minimum zone in the Arabian Sea during 1995. Deep-Sea Res II-Top Stud Oceanogr 46:1903–1931CrossRefGoogle Scholar
  30. 30.
    Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma V, D’Souza W, Joseph S, George MD (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408:346–349PubMedCrossRefGoogle Scholar
  31. 31.
    Naqvi SWA, Naik H, Narvekar PV (2003) The Arabian Sea. In: Black K, Shimmield G (eds) Biogeochemistry of marine systems. Blackwell, Oxford, pp 156–206Google Scholar
  32. 32.
    Naqvi SWA, Kumar MD, Narvekar PV, De Sousa SN, George MD, D’Silva C (1993) An intermediate nepheloid layer associated with high microbial metabolic rates and denitrification in the northwest Indian Ocean. J Geophys Res 98:16469–16479CrossRefGoogle Scholar
  33. 33.
    Naqvi SWA, Shailaja MS (1993) Activity of the respiratory electron-transport system and respiration rates within the oxygen minimum layer of the Arabian Sea. Deep-Sea Res II-Top Stud Oceanogr 40:687–695CrossRefGoogle Scholar
  34. 34.
    Naqvi SWA, Yoshinari T, Jayakumar DA, Altabet MA, Narvekar PV, Devol AH, Brandes JA, Codispoti LA (1998) Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea. Nature 391:462–464CrossRefGoogle Scholar
  35. 35.
    Nicholls JC, Davies IM, Trimmer M (2007) High-resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central Arabian Sea. Limnol Oceanogr 52:156–168Google Scholar
  36. 36.
    Pak H, Codispoti LA, Zaneveld JRV (1980) On the intermediate particle maximum associated with the oxygen-poor waters off western South America. Deep-Sea Res 27:783–797CrossRefGoogle Scholar
  37. 37.
    Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  38. 38.
    Santoro AE, Boehm AB, Francis CA (2006) Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Appl Environ Microbiol 72:2102–2109PubMedCrossRefGoogle Scholar
  39. 39.
    Scala DJ, Kerkhof LJ (1999) Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Applied and Environmental Microbiology 65:11681–11687Google Scholar
  40. 40.
    Schloss PD, Handlesman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506PubMedCrossRefGoogle Scholar
  41. 41.
    Schmid M, Walsh KA, Webb R, Rijpstra WIC, van de Pas-Schoonen K, Verbreuggen ML, Hill TCJ, Moffett BF, Fuerst J, Schouten S (2003) Candidatus “Scalindua broad”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonia oxidizing bacteria. Syst Appl Microbiol 26:529–538PubMedCrossRefGoogle Scholar
  42. 42.
    Schwartz MW, Brigham CA, Hoeksema JG, Lyons KG, Mills MH, van Mantgem PJ (2000) Linking biodiversity to ecosystem functeion: implications for conservation ecology. Oecologia 122:297–305CrossRefGoogle Scholar
  43. 43.
    Spinrad RW, Glover HE, Ward BB, Codispoti LA, Kullenberg G (1989) Suspended particle and bacterial maxima in Peruvian coastal waters during a cold water anomaly. Deep-Sea Res 36:715–733CrossRefGoogle Scholar
  44. 44.
    Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a poweful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Environ Microbiol 50:589–596Google Scholar
  45. 45.
    Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794PubMedCrossRefGoogle Scholar
  46. 46.
    Thamdrup B, Dalsgaard T, Jensen MM, Ulloa O, Farias L, Escribano R (2006) Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol Oceanogr 51:2145–2156Google Scholar
  47. 47.
    Thompson JD, Gibson RJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876–4882PubMedCrossRefGoogle Scholar
  48. 48.
    Tilman D, Lehman CL (2002) Biodiversity, composition, and ecosystem processes: theory and concepts. In: Kinzig AP, Pacala SW, Tilman D (eds) The functional consequences of biodiversity, empirical progress and theoretical extensions. Princeton University Press, Princeton, NJ, USAGoogle Scholar
  49. 49.
    Tilman D, Lehman CL, Thompson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861PubMedCrossRefGoogle Scholar
  50. 50.
    Ward BB, Tuit CB, Jayakumar A, Rich JJ, Moffett J, Naqvi SWA (2008) Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean. Deep-Sea Res. I, 55:1672–11683CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Jayakumar
    • 1
  • G. D. O’Mullan
    • 2
  • S. W. A. Naqvi
    • 3
  • B. B. Ward
    • 1
  1. 1.Department of Geosciences, Guyot HallPrinceton UniversityPrincetonUSA
  2. 2.School of Earth and Environmental Sciences, Queens CollegeCity University of New YorkFlushingUSA
  3. 3.National Institute of OceanographyDona PaulaIndia

Personalised recommendations