Microbial Ecology

, Volume 58, Issue 2, pp 290–306 | Cite as

Molecular Characterization of an Endolithic Microbial Community in Dolomite Rock in the Central Alps (Switzerland)

  • Thomas Horath
  • Reinhard BachofenEmail author
Environmental Microbiology


Endolithic microorganisms colonize the pores in exposed dolomite rocks in the Piora Valley in the Swiss Alps. They appear as distinct grayish-green bands about 1–8 mm below the rock surface. Based on environmental small subunit ribosomal RNA gene sequences, a diverse community driven by photosynthesis has been found. Cyanobacteria (57 clones), especially the genus Leptolyngbya, form the functional basis for an endolithic community which contains a wide spectrum of so far not characterized species of chemotrophic Bacteria (64 clones) with mainly Actinobacteria, Alpha-Proteobacteria, Bacteroidetes, and Acidobacteria, as well as a cluster within the Chloroflexaceae. Furthermore, a cluster within the Crenarchaeotes (40 clones) has been detected. Although the eukaryotic diversity was outside the scope of the study, an amoeba (39 clones), and several green algae (51 clones) have been observed. We conclude that the bacterial diversity in this endolithic habitat, especially of chemotrophic, nonpigmented organisms, is considerable and that Archaea are present as well.


Dolomite Extracellular Polymeric Substance Clone Library Actinobacteria Travertine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Steven M. Holland for providing his program Analytic Rarefaction as well as to John Marti for some revisions of the manuscript. And last but not least, we would like to thank the reviewers for their helpful comments and corrections.


  1. 1.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. 2.
    Ascaso C, Wierzchos J (2002) New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. Int Microbiol 5:215–222PubMedCrossRefGoogle Scholar
  3. 3.
    Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21:11–20CrossRefGoogle Scholar
  4. 4.
    Beer M, Seviour EM, Kong Y, Cunningham M, Blackall LL, Seviour RJ (2002) Phylogeny of the filamentous bacterium Eikelboom Type 1851, and design and application of a 16S rRNA targeted oligonucleotide probe for its fluorescence in situ identification in activated sludge. FEMS Microbiol Lett 207:179–183PubMedCrossRefGoogle Scholar
  5. 5.
    Bell RA, Athey PV, Sommerfeld MR (1986) Cryptoendolithic algal communities of the Colorado Plateau. J Phycol 22:429–435CrossRefGoogle Scholar
  6. 6.
    Bell RA, Athey PV, Sommerfeld MR (1988) Distribution of endolithic algae on the Colorado Plateau of Northern Arizona. Southwest Nat 33:315–322CrossRefGoogle Scholar
  7. 7.
    Bell RA (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J Phycol 29:133–139CrossRefGoogle Scholar
  8. 8.
    Björnsson L, Hugenholtz P, Tyson GW, Blackall LL (2002) Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiol 148:2309–2318Google Scholar
  9. 9.
    Boomer SM, Lodge DP, Dutton BE, Pierson B (2002) Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. Appl Environ Microbiol 68:346–355PubMedCrossRefGoogle Scholar
  10. 10.
    Buckley DH, Graber JR, Schmidt TM (1998) Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol 64:4333–4339PubMedGoogle Scholar
  11. 11.
    Burggraf S, Stetter KO, Rouviere P, Woese CR (1991) Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst Appl Microbiol 14:346–351PubMedGoogle Scholar
  12. 12.
    Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C (2007) Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Science Total Environ 385:172–181CrossRefGoogle Scholar
  13. 13.
    Cavender JA (1978) Taxonomy with confidence. Math Biosci 40:271–280CrossRefGoogle Scholar
  14. 14.
    Chandler DP, Brockman FJ, Bailey TJ, Fredrickson JK (1998) Phylogenetic diversity of Archaea and Bacteria in a deep subsurface paleosol. Microb Ecol 36:37–50PubMedCrossRefGoogle Scholar
  15. 15.
    Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteoritics Planetary Science 37:1287–1298Google Scholar
  16. 16.
    Cockell ChS, Lee P, Broady P, Lim DSS, Osinski GR, Parnell J, Koeberl Ch, Pesonen L, Salminen J (2005) Effects of asteroid and comet impacts on habitats for lithophytic organisms – A synthesis. Meteoritics Planetary Science 40:1901–1914Google Scholar
  17. 17.
    de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867PubMedCrossRefGoogle Scholar
  18. 18.
    de los Rios A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395CrossRefGoogle Scholar
  19. 19.
    Diels L (1914) Die Algen-Vegetation der Südtiroler Dolomitriffe. Ber Dtsch Bot Ges 32:502–526Google Scholar
  20. 20.
    Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853PubMedCrossRefGoogle Scholar
  21. 21.
    Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  22. 22.
    Ferris FG, Lowson EA (1997) Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara escarpment. Can J Microbiol 43:211–219Google Scholar
  23. 23.
    Friedmann EI (1971) Light and scanning electron microscopy of the endolithic desert algal habitat. Phycologia 10:411–428Google Scholar
  24. 24.
    Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the Dry Valleys: primary producers in the Antarctic desert ecosystem. Science 193:1247–1249PubMedCrossRefGoogle Scholar
  25. 25.
    Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Orig Life 10:223–235PubMedCrossRefGoogle Scholar
  26. 26.
    Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  27. 27.
    Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69PubMedCrossRefGoogle Scholar
  28. 28.
    Garbary DJ, Van Thielen N, Miller A (1996) Endolithic algae from gypsum in Nova Scotia. J Phycol 32(Suppl):17Google Scholar
  29. 29.
    Garcia-Pichel F, Lopez-Cortes A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910PubMedCrossRefGoogle Scholar
  30. 30.
    Garty J (2000) Lithobionts in the eastern mediterranian. In: Seckbach J (ed) Journey to diverse microbial worlds, adaptation to exotic environments. Kluwer Academic, Norwell, pp 257–277Google Scholar
  31. 31.
    Gerrath JF, Gerrath JA, Larson DW (1995) A preliminary account of endolithic algae of limestone cliffs of the Niagara Escarpment. Can J Bot 73:788–793Google Scholar
  32. 32.
    Gerrath JF, Gerrath JA, Matthes U, Larson DW (2000) Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can J Bot 78:807–815CrossRefGoogle Scholar
  33. 33.
    Giovannoni SJ, Rappé MS, Vergin KL, Adair NL (1996) 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proc Natl Acad Sci USA 93:7979–7984PubMedCrossRefGoogle Scholar
  34. 34.
    Golubic S, Friedmann EI, Schneider J (1981) The lithobiotic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478Google Scholar
  35. 35.
    Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631PubMedCrossRefGoogle Scholar
  36. 36.
    Grossmann AR, Schaefer MR, Chiang GG, Collier JL (1994) The responses of cyanobacteria to environmental conditions: light and nutrients. In: Briant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, pp 641–675Google Scholar
  37. 37.
    Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A 103:18296–18301PubMedCrossRefGoogle Scholar
  38. 38.
    Hanada S, Hiraishi A, Shimada K, Matsuura K (1995) Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 45:676–681PubMedCrossRefGoogle Scholar
  39. 39.
    Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Bacteriol 52:187–193Google Scholar
  40. 40.
    Hofmann BA, Farmer JD (2000) Filamentous fabrics in low-temperature mineral assemblages: are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars. Planet Space Sci 48:1077–1086CrossRefGoogle Scholar
  41. 41.
    Horath Th, Neu ThR, Bachofen R (2004) Endolithic populations in dolomite rock. 63rd Annual Assembly of the Swiss Society of Microbiology, LuganoGoogle Scholar
  42. 42.
    Horath Th, Neu ThR, Bachofen R (2006) An endolithic microbial community in dolomite rock in Central Switzerland: characterization by reflection spectroscopy, pigment analyses, scanning electron microscopy, and laser scanning microscopy. Microb Ecol 51:353–364PubMedCrossRefGoogle Scholar
  43. 43.
    Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the Dry Valleys of Antarctica. Science 176:242–245PubMedCrossRefGoogle Scholar
  44. 44.
    Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565PubMedCrossRefGoogle Scholar
  45. 45.
    Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beitr Kryptogamenflora Schweiz 9:1–560Google Scholar
  46. 46.
    Judson O (2004) Some Things Are Better Left on Mars. The New York Times. April 19, 2004 []
  47. 47.
    Komarek J (2003) Coccoid and colonial cyanobacteria. In: Wehr JD, Sheath RG, Thorp JH (eds) Freshwater algae of North America. Elsevier Science, Amsterdam, pp 59–116CrossRefGoogle Scholar
  48. 48.
    Kuhlmann KR, Fusco WG, La Duc MT, Allenbach LB, Ball CL, Kuhlman GM, Anderson RC, Erickson IK, Stuecker T, Benardini J, Strap JL, Crawford RL (2006) Diversity of microorganisms within rock varnish in the Whipple Mountains, California. Appl Environ Microbiol 72:1708–1715CrossRefGoogle Scholar
  49. 49.
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci 82:6955–6959PubMedCrossRefGoogle Scholar
  50. 50.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  51. 51.
    Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695PubMedCrossRefGoogle Scholar
  52. 52.
    Ludwig W, Schleifer KH (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence-analysis. FEMS Microbiol Revs 15:155–173CrossRefGoogle Scholar
  53. 53.
    Ludwig W, Klenk HP (2001) Overview: A phylogenetic backbone and taxonomic framework for prokaryotic systamatics. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 49–65Google Scholar
  54. 54.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar XY, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  55. 55.
    Mason OU, Stingl U, Wilhelm LJ, Moeseneder MM, Di Meo-Savoie CA, Fisk MR, Giovannoni SJ (2007) The phylogeny of endolithic microbes associated with marine basalts. Environ Microbiol 9:2539–2550PubMedCrossRefGoogle Scholar
  56. 56.
    Matthes-Sears U, Gerrath JA, Larson DW (1997) Abundance, biomass, and productivity of endolithic and epilithic lower plants on the temperate-zone cliffs of the Niagara Escarpment, Canada. Int J Plant Sci 158:451–460CrossRefGoogle Scholar
  57. 57.
    Matthes-Sears U, Gerrath JA, Gerrath JF, Larson DW (1999) Community structure of epilithic and endolithic algae and cyanobacteria on cliffs of the Niagara Escarpment. J Veg Sci 10:587–598CrossRefGoogle Scholar
  58. 58.
    McKay CP, Friedmann EI (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biol 4:19–25PubMedCrossRefGoogle Scholar
  59. 59.
    McKay CP (1993) Relevance of antarctic microbial ecosystems to exobiology. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 593–601Google Scholar
  60. 60.
    Messing J (1983) New M13 Vectors for Cloning. Method Enzymol 101:20–78CrossRefGoogle Scholar
  61. 61.
    Moissl C, Bruckner JC, Venkateswaran K (2008) Archaeal diversity analysis of spacecraft assembly clean rooms. ISME J 2:115–119PubMedCrossRefGoogle Scholar
  62. 62.
    McNamara CJ, Perry TD, Bearce KA, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51:51–64PubMedCrossRefGoogle Scholar
  63. 63.
    Nealson K, Berelson W (2003) Layered microbial communities and the search for life in the universe. Geomicrobiol J 20:451–462CrossRefGoogle Scholar
  64. 64.
    Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412Google Scholar
  65. 65.
    Norris TB, Castenholz RW (2006) Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park. FEMS Microbiol Ecol 57:470–483PubMedCrossRefGoogle Scholar
  66. 66.
    Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedGoogle Scholar
  67. 67.
    Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832PubMedCrossRefGoogle Scholar
  68. 68.
    Pentecost A (1992) Growth and distribution of endolithic algae in some North Yorkshire streams (UK). Brit Phycol J 27:145–151CrossRefGoogle Scholar
  69. 69.
    Pentecost A, Bayari S, Yesertener C (1997) Phototrophic microorganisms of the Pamukkale travertine, Turkey: their distribution and influence on travertine deposition. Geomicrobiol J 14:269–283CrossRefGoogle Scholar
  70. 70.
    Pierson BK, Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs. Chloroflexus aurantiacus gen. and sp. nov. Arch Microbiol 100:5–24PubMedCrossRefGoogle Scholar
  71. 71.
    Pierson BK, Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305CrossRefGoogle Scholar
  72. 72.
    Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedCrossRefGoogle Scholar
  73. 73.
    Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  74. 74.
    Russell NC, Edwards HGM, Wynn-Williams DD (1998) FT-Raman spectroscopic analysis of endolithic microbial communities from Beacon sandstone in Victoria Land, Antarctica. Antarct Sci 10:63–74CrossRefGoogle Scholar
  75. 75.
    Sambrook J, Fritsch EF, Maniatis Th (1989) Molecular cloning - a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring HarbourGoogle Scholar
  76. 76.
    Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691PubMedCrossRefGoogle Scholar
  77. 77.
    Schnider-Keel U, Lejbølle KB, Baehler E, Haas D, Keel C (2001) The Sigma Factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 67:5683–5693PubMedCrossRefGoogle Scholar
  78. 78.
    Schönhuber W, Zarda B, Eix S, Rippka R, Herdman M, Ludwig W, Amann RI (1999) In situ identification of cyanobacteria with horseradish peroxidase- labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 65:1259–1267PubMedGoogle Scholar
  79. 79.
    Schröter C (1908) Das Pflanzenleben der Alpen. Raustein, ZürichGoogle Scholar
  80. 80.
    Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H (2001) In situ detection, isolation and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749PubMedCrossRefGoogle Scholar
  81. 81.
    Sigler WV, Horath Th, Neu Th, Bachofen R (2002) Endolithic microbial populations in dolomite rock. Abstract 207, Int. Symp. Subsurface Microbiol. (ISSM-02) Copenhagen 2002.Google Scholar
  82. 82.
    Sigler WV, Bachofen R, Zeyer J (2003) Molecular characterization of endolithic cyantobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5:618–627PubMedCrossRefGoogle Scholar
  83. 83.
    Smith MC, Bowman JP, Scott FJ, Line MA (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184Google Scholar
  84. 84.
    Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  85. 85.
    Stahl DA, Amann RI (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 205–248Google Scholar
  86. 86.
    Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169PubMedCrossRefGoogle Scholar
  87. 87.
    Van Thielen N, Garbary DJ (2000) Life in the rocks—endolithic algae. In: Seckbach J (ed) Journey to diverse microbial worlds, adaptation to exotic environments. Kluwer, Dordrecht, pp 245–253Google Scholar
  88. 88.
    Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014PubMedCrossRefGoogle Scholar
  89. 89.
    Walker JJ, Pace NR (2007a) Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504PubMedCrossRefGoogle Scholar
  90. 90.
    Walker JJ, Pace NR (2007b) Endolithic microbial ecosystems. Ann Rev Microbiol 61:331–347CrossRefGoogle Scholar
  91. 91.
    Warscheid Th, Braams J (2000) Biodeterioration of stone: a review. Int Biodeter Biodegr 46:343–368CrossRefGoogle Scholar
  92. 92.
    Whitton BA, Potts M (1982) Marine littoral. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell, Oxford, pp 515–542Google Scholar
  93. 93.
    Wierzchos J, Ascaso C (2001) Life, decay and fossilisation of endolithic microorganisms from the Ross Desert, Antarctica. Polar Biol 24:863–868CrossRefGoogle Scholar
  94. 94.
    Wierzchos J, Ascaso C, Sancho LG, Green A (2003) Iron-rich diagenetic minerals are biomarkers of microbial activity in Antarctic rocks. Geomicrobiol J 20:15–24CrossRefGoogle Scholar
  95. 95.
    Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075CrossRefGoogle Scholar
  96. 96.
    Wynn-Williams DD (2000) Cyanobacteria in deserts—life at the limit? In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 341–366Google Scholar
  97. 97.
    Xinyao L, Miao S, Yonghong L, Yin G, Zhongkai Z, Donghui W, Weizhong W, Chencai A (2006) Feeding characteristics of an amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: food selection, ingestion and digestion progress. Microb Ecol 51:315–325PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Plant Biology/MicrobiologyUniversity of ZürichZürichSwitzerland

Personalised recommendations