Microbial Ecology

, Volume 57, Issue 1, pp 1–3 | Cite as

Next-Generation Sequencing—the Promise and Perils of Charting the Great Microbial Unknown

  • Lori A. S. Snyder
  • Nick Loman
  • Mark J. Pallen
  • Charles W. Penn
Brief Report

Studies of microorganisms in pure laboratory culture for over a century have delivered fruitful insights into microbial genetics and physiology, underpinning biotechnology, and molecular biology. Yet most bacteria cannot be or have not been cultured under laboratory conditions. Microorganisms in their natural environments live in complex, mixed, and interdependent microbial communities (e.g. in soil, feces, sewage, rivers, oceans), with key roles in the biosphere. These systems are intimately connected with the big challenges for the future of human existence: agriculture and food production, diet and health, and impact of human communities on the natural environment. Knowledge and understanding of the biodiversity of bacteria is minimal in comparison with the diversity of higher plants and animals, where perhaps 90–99% of all species are known. In stark contrast, it is estimated that less than 1% of bacterial diversity is known. Even in the human microbial ecosystem, which has...


Microbial Ecosystem Ammonia Monooxygenase Colony Collapse Disorder Single Molecule Sequencing Israeli Acute Paralysis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  2. 2.
    Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378PubMedGoogle Scholar
  3. 3.
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  4. 4.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRefGoogle Scholar
  5. 5.
    Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359PubMedCrossRefGoogle Scholar
  6. 6.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810PubMedCrossRefGoogle Scholar
  7. 7.
    Anon (2008, posting date). National Institutes of Health Human Microbiome Project [Online.]
  8. 8.
    Mullard A (2008) Microbiology: the inside story. Nature 453:578–580PubMedCrossRefGoogle Scholar
  9. 9.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMedCrossRefGoogle Scholar
  10. 10.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651PubMedCrossRefGoogle Scholar
  11. 11.
    Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC Jr, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57PubMedCrossRefGoogle Scholar
  12. 12.
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120PubMedCrossRefGoogle Scholar
  13. 13.
    Huber JA, Welch DBM, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100PubMedCrossRefGoogle Scholar
  14. 14.
    Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809PubMedCrossRefGoogle Scholar
  15. 15.
    Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287PubMedCrossRefGoogle Scholar
  16. 16.
    Doctorow C (2008) Big data: welcome to the petacentre. Nature 455:16–21PubMedCrossRefGoogle Scholar
  17. 17.
    Waldrop M (2008) Big data: Wikiomics. Nature 455:22–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lori A. S. Snyder
    • 1
  • Nick Loman
    • 1
  • Mark J. Pallen
    • 1
  • Charles W. Penn
    • 2
  1. 1.Centre for Systems BiologyUniversity of BirminghamEdgbastonUK
  2. 2.School of BiosciencesUniversity of BirminghamEdgbastonUK

Personalised recommendations