Microbial Ecology

, Volume 57, Issue 2, pp 335–348 | Cite as

Molecular Diversity of the Rumen Microbiome of Norwegian Reindeer on Natural Summer Pasture

  • Monica A. SundsetEmail author
  • Joan E. Edwards
  • Yan Fen Cheng
  • Roberto S. Senosiain
  • Maria N. Fraile
  • Korinne S. Northwood
  • Kirsti E. Præsteng
  • Trine Glad
  • Svein D. Mathiesen
  • André-Denis G. Wright
Original Article


The molecular diversity of the rumen microbiome was investigated in five semi-domesticated adult female Norwegian reindeer (Rangifer tarandus tarandus) grazing on natural summer pastures on the coast of northern Norway (71.00° N, 25.30° E). Mean population densities (numbers per gram wet weight) of methanogenic archaea, rumen bacteria and ciliate protozoa, estimated using quantitative real-time polymerase chain reaction (PCR), were 3.17 × 109, 5.17 × 1011 and 4.02 × 107, respectively. Molecular diversity of rumen methanogens was revealed using a 16S rRNA gene library (54 clones) constructed using pooled PCR products from the whole rumen contents of the five individual reindeer. Based upon a similarity criterion of <97%, a total of 19 distinct operational taxonomic units (OTUs) were identified, nine of which are potential new species. The 16S rRNA sequences generated from the reindeer rumen exhibited a high degree of sequence similarity to methanogens affiliated with the families Methanobacteriaceae (14 OTUs) and Methanosarcinaceae (one OTU). Four of the OTUs detected belonged to a group of uncultivated archaea previously found in domestic ruminants and thought to be dominant in the rumen together with Methanobrevibacter spp. Denaturing gradient gel electrophoresis profiling of the rumen bacterial 16S rRNA gene and the protozoal 18S rRNA gene indicated a high degree of animal variation, although some bands were common to all individuals. Automated ribosomal intergenic spacer analysis (ARISA) profiling of the ruminal Neocallimastigales population indicated that the reindeer are likely to contain more than one type of anaerobic fungus. The ARISA profile from one animal was distinct from the other four. This is the first molecular investigation of the ruminal methanogenic archaea in reindeer, revealing higher numbers than expected based on methane emission data available. Also, many of the reindeer archaeal 16S rRNA gene sequences were similar to those reported in domesticated ruminants in Australia, Canada, China, New Zealand and Venezuela, supporting previous findings that there seems to be no host type or geographical effect on the methanogenic archaea community structure in ruminants.


Usnic Acid Ciliate Protozoan Rumen Content Anaerobic Fungus Automate Ribosomal Intergenic Space Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by the Roald Amundsen Centre for Arctic Research (Project number 200507652), the University of Tromsø (Institute of Medical Biology) and the Norwegian Research Council (Project number 641225 S5258). It is linked to the framework of the International Polar Year (IPY) as part of the consortium IPY # 399 EALAT: Climate change and reindeer husbandry. The sequencing laboratory at the Medical Faculty, University of Tromsø is acknowledged for their efficient work sequencing the methanogenic Archaea 16S rRNA genes. We thank Dr. Stuart Denman (CSIRO Livestock Industries, Brisbane, Australia) for providing the protocol for glass milk DNA extraction. We are grateful to Prof. Mike Theodorou and Prof. Jamie Newbold for their support of the analyses conducted at IGER.


  1. 1.
    Aagnes TH, Mathiesen SD (1994) Food and snow intake, body mass and rumen function in reindeer fed lichen and subsequently starved for 4 days. Rangifer 14:33–37Google Scholar
  2. 2.
    Aagnes TH, Sørmo W, Mathiesen SD (1995) Ruminal microbial digestion in free-living, in captive lichen-fed, and in starved reindeer (Rangifer tarandus tarandus) in winter. Appl Environ Microbiol 61:583–591PubMedGoogle Scholar
  3. 3.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Chang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. 4.
    Baker SK (1999) Rumen methanogens, and inhibition of methanogenesis. Aust J Agric Res 50:1293–1298CrossRefGoogle Scholar
  5. 5.
    Chagan I, Tokura M, Jouany JP, Ushida K (1999) Detection of methanogenic archaea associated with rumen ciliate protozoa. J Gen Appl Microbiol 45:305–308PubMedCrossRefGoogle Scholar
  6. 6.
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443PubMedCrossRefGoogle Scholar
  7. 7.
    Coleman GS (1979) The role of rumen protozoa in the metabolism of ruminants given tropical feeds. Trop Anim Prod 4:199–213Google Scholar
  8. 8.
    Denman SE, McSweeney CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58:572–582PubMedCrossRefGoogle Scholar
  9. 9.
    Denman SE, Tomkins NW, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62:313–322PubMedCrossRefGoogle Scholar
  10. 10.
    Dehority BA (1975) Rumen ciliate protozoa of Alaskan reindeer and caribou (Rangifer tarandus L.) in reindeer. In: Luick JR, Lent PC, Klein KR, White RG (eds) Proc. First Int. Reindeer-Caribou Symp., Fairbanks, University of Alaska, Special Report No. 1, pp 241–250Google Scholar
  11. 11.
    Dohme F, Machmüller A, Estermann BL, Pfister P, Wasserfallen A, Kreuzer M (1999) The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Lett Appl Microbiol 29:187–192CrossRefGoogle Scholar
  12. 12.
    Dumitru R, Palencia H, Schroeder SD, DeMontigny BA, Takacs JM, Rasche ME, Miner JL, Ragsdale SW (2003) Targeting methanopterin biosynthesis to inhibit methanogenesis. Appl Environ Microbiol 69:7236–7241PubMedCrossRefGoogle Scholar
  13. 13.
    Ebenlein R (1895) Uber die Wiederkauermagen vorkommenden ciliaten infusiorien. Zeitsschr Wiss Zool 59:233–303Google Scholar
  14. 14.
    Edwards JE, Kingston-Smith AH, Jimenez HR, Huws SA, Skøt K, Griffith GW, McEwan NR, Theodorou MK (2008) Dynamics of initial colonisation of non-conserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol Ecol, in pressGoogle Scholar
  15. 15.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  16. 16.
    Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP (1994) Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–161PubMedCrossRefGoogle Scholar
  17. 17.
    Gotaas G, Tyler NJC (1994) Methane production and the doubly labelled water method in reindeer (Rangifer tarandus tarandus). Proc Soc Nutr Physiol 3:181Google Scholar
  18. 18.
    Heilig H, Zoetendal EG, Vaughan E, Marteau P, Akkermans A, de Vos W (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123PubMedCrossRefGoogle Scholar
  19. 19.
    Jarvis GN, Strömpl C, Burgess DM, Skillman LC, Moore ERB, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40:327–332PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492PubMedGoogle Scholar
  21. 21.
    Lin C, Raskin L, Stahl DA (1997) Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyses using rRNA-targeted oligonucleotide probes. FEMS Microbiol Ecol 22:281–294CrossRefGoogle Scholar
  22. 22.
    Liu W, Saint DA (2002) Validation of a quantitative method for real time PCR kinetics. Biochem Biophys Res Comm 294:347–353PubMedCrossRefGoogle Scholar
  23. 23.
    Lubinski G (1958) Ophryoscolecidae (Ciliata: Entodinimorphida) of reindeer (Rangifer tarandus L) from the Canadian Arctic. I. Entodiniinae. Can J Zool 36:819–835CrossRefGoogle Scholar
  24. 24.
    Mackie RI, Aminov RI, Hu W, Klieve AV, Ouwerkerk D, Sundset MA, Kamagata Y (2003) Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol 69:6808–6815PubMedCrossRefGoogle Scholar
  25. 25.
    Makkar HPS, McSweeney CS (eds) (2005) Methods in gut microbial ecology for ruminants. Springer, DordrechtGoogle Scholar
  26. 26.
    Mathiesen SD (1999) Comparative aspects of digestion in reindeer. Ph.D. Thesis, University of Tromsø, NorwayGoogle Scholar
  27. 27.
    Mathiesen SD, Mackie RI, Aschfalk A, Ringø E, Sundset MA (2005) Microbial ecology of the gastrointestinal tract in reindeer—changes through season, p 73–100. In: Holzapfel, W, Naughton, P (eds) Microbial ecology of the growing animal; biology of the growing animals, vol. 3. Elsevier, Oxford, pp 75–102Google Scholar
  28. 28.
    Miller TL, Wolin MJ, Hongxue Z, Bryant MP (1986) Characteristics of methanogens isolated from bovine rumen. Appl Environ Microbiol 51:201–202PubMedGoogle Scholar
  29. 29.
    Newbold CJ, Lassalas B, Jouany JP (1995) The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol 21:230–234PubMedCrossRefGoogle Scholar
  30. 30.
    Nicholson MJ, Evans PN, Joblin KN (2007) Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: identification of uncultured methanogens. Microbial Ecol 54:141–150CrossRefGoogle Scholar
  31. 31.
    Olsen MA, Mathiesen SD (1998) The bacterial population adherent to plant particles in the rumen of reindeer fed lichen, timothy hay or silage. Rangifer 18:55–64Google Scholar
  32. 32.
    Olsen MA, Aagnes TH, Mathiesen SD (1997) The effect of timothy silage on the bacterial population in rumen fluid of reindeer (Rangifer tarandus tarandus) from natural summer and winter pasture. FEMS Microbiol Ecol 24:127–136CrossRefGoogle Scholar
  33. 33.
    Orpin CG (1975) Studies of the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262PubMedGoogle Scholar
  34. 34.
    Orpin CG, Mathiesen SD (1990) Microbiology of digestion in the Svalbard reindeer (Rangifer tarandus platyrhynchus). Rangifer Special issue No.3:187–199Google Scholar
  35. 35.
    Orpin CG, Loblin KN (1997) The rumen anaerobic fungi. In: Hobson PN, Stewart C (eds) The rumen microbial ecosystem. Blackie Academic & Professional, Chapman & Hall, London, pp 73–139Google Scholar
  36. 36.
    Orpin CG, Mathiesen SD, Greenwood I, Blix AS (1985) Seasonal changes in the ruminal microflora of the High-Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl Environ Microbiol 50:144–151PubMedGoogle Scholar
  37. 37.
    Palo RT (1993) Usnic acid, a secondary metabolite of lichens and its effect on in vitro digestibility in reindeer. Rangifer 13:39–43Google Scholar
  38. 38.
    Ranilla MJ, Jouany J-P, Morgavi DP (2007) Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro. Lett Appl Microbiol 45:675–680PubMedCrossRefGoogle Scholar
  39. 39.
    Rea S, Bowman JP, Popovski S, Pimm C, Wright A-DG (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and the bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57:450–456PubMedCrossRefGoogle Scholar
  40. 40.
    Regensbogenova M, McEwan NR, Javorsky P, Kisidayova S, Michalowski T, Newbold CJ, Hackstein JHP, Pristas P (2004) A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol Lett 238:307–313PubMedCrossRefGoogle Scholar
  41. 41.
    Regensbovenova M, Pristas P, Javorsky P, Moon-van der Staay SY, van der Staay GWM, Hackstein JHP, Newbold CJ, McEwan NR (2004) Assessment of ciliates in the sheep rumen by DGGE. Lett Appl Microbiol 39:144–147CrossRefGoogle Scholar
  42. 42.
    Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques 17:914–921PubMedGoogle Scholar
  43. 43.
    Sharp R, Ziemer CJ, Stern MD, Stahl DA (1998) Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol Ecol 26:71–78CrossRefGoogle Scholar
  44. 44.
    Shi PJ, Meng K, Zhou ZG, Wang YR, Diao QY, Yao B (2008) The host species affects the microbial community in the goat rumen. Lett Appl Microbiol 46:132–135PubMedGoogle Scholar
  45. 45.
    Skillman LC, Evans PN, Naylor GE, Morvan B, Graeme MJ, Joblin KN (2004) 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10:277–285PubMedCrossRefGoogle Scholar
  46. 46.
    Skillman LC, Toovey AF, Williams AJ, Wright A-DG (2006) Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between protozoal populations in sheep fed a hay based diet. Appl Environ Microbiol 72:200–206PubMedCrossRefGoogle Scholar
  47. 47.
    Stackebrandt E, Goebel BM (1994) A place for DNA-DNA reassociation and 16S ribosomal-RNA sequence-analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  48. 48.
    Storeheier PV, Mathiesen SD, Tyler NJC, Olsen MA (2002) Nutritive value of terricolous lichens for reindeer in winter. The Lichenologist 34:247–257CrossRefGoogle Scholar
  49. 49.
    Sundset MA, Præsteng KE, Cann IKO, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microbial Ecol 54:424–438CrossRefGoogle Scholar
  50. 50.
    Sundset MA, Kohn A, Mathiesen SD, Præsteng KE (2008) Eubacterium rangiferina, a novel usnic acid-resistant bacterium isolated from the reindeer rumen. Naturwissenschaften doi: 10.1007/s00114-008-0381-0
  51. 51.
    Sylvester JT, Karnati SKR, Yu Z, Morrison M, Firkins JL (2004) Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr 134:3378–3384PubMedGoogle Scholar
  52. 52.
    Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI (2001) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200:67–72PubMedCrossRefGoogle Scholar
  53. 53.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  54. 54.
    Tyler NJC, Turi JM, Sundset MA, Strøm Bull K, Sara MN, Reindert E, Oskal N, Nellemann C, McCarthy JJ, Mathiesen SD, Martello ML, Magga OH, Hovelsrud GK, Hanssen-Bauer I, Eira NI, Eira IMG, Corell RW (2006) Saami reindeer pastoralism under climate change: applying a generalized framework for vulnerability studies to a sub-arctic social–ecological system. Global Environ Change 17:191–206Google Scholar
  55. 55.
    Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612PubMedGoogle Scholar
  56. 56.
    Whitford MF, Teather RM, Foster RJ (2001) Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 1:5PubMedCrossRefGoogle Scholar
  57. 57.
    Williams AG, Coleman SG (1997) The rumen protozoa. In: Hobson PN, Stewart C (eds) The rumen microbial ecosystem. Blackie Academic & Professional, Chapman & Hall, London, pp 73–139Google Scholar
  58. 58.
    Wright A-DG, Pimm C (2003) Improved strategy for presumptive identification of methanogens using 16S riboprinting. J Microbiol Methods 55:337–349PubMedCrossRefGoogle Scholar
  59. 59.
    Wright A-DG, Kennedy P, O ’Neill CJ, Toovey AF, Popovski S, Rea SM, Pimm CL, Klein L (2004) Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22:3976–3985PubMedCrossRefGoogle Scholar
  60. 60.
    Wright A-DG, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in western Australia. Appl Environ Microbiol 70:1263–1270PubMedCrossRefGoogle Scholar
  61. 61.
    Wright A-DG, Toovey AF, Pimm CL (2006) Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea. Anaerobe 12:134–139PubMedCrossRefGoogle Scholar
  62. 62.
    Wright A-DG, Auckland CH, Lynn DH (2007) Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl Environ Microbiol 73:4206–4210PubMedCrossRefGoogle Scholar
  63. 63.
    Wright A-DG, Ma X, Obispo NE (2008) Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela. Microbial Ecol doi: 10.1007/s00248-007-9351-x
  64. 64.
    Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H (2000) Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem 64:1737–1742PubMedCrossRefGoogle Scholar
  65. 65.
    Zoetendal EG, Akkermans ADL (1998) Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Monica A. Sundset
    • 1
    Email author
  • Joan E. Edwards
    • 2
  • Yan Fen Cheng
    • 2
    • 3
  • Roberto S. Senosiain
    • 1
  • Maria N. Fraile
    • 1
  • Korinne S. Northwood
    • 4
  • Kirsti E. Præsteng
    • 1
  • Trine Glad
    • 1
    • 5
  • Svein D. Mathiesen
    • 6
    • 7
  • André-Denis G. Wright
    • 4
  1. 1.Department of Arctic Biology and Institute of Medical BiologyUniversity of TromsøTromsøNorway
  2. 2.Institute of Grassland and Environmental ResearchAberystwythUK
  3. 3.College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
  4. 4.CSIRO Livestock IndustriesQueensland Bioscience PrecinctSt. LuciaAustralia
  5. 5.Department of Pharmacology and Institute of PharmacyUniversity of TromsøTromsøNorway
  6. 6.Saami University CollegeGuovdageaidnuNorway
  7. 7.Section of Arctic Veterinary MedicineThe Norwegian School of Veterinary ScienceTromsøNorway

Personalised recommendations