Microbial Ecology

, Volume 56, Issue 4, pp 625–636 | Cite as

Epibiotic Vibrio Luminous Bacteria Isolated from Some Hydrozoa and Bryozoa Species

  • L. StabiliEmail author
  • C. Gravili
  • S. M. Tredici
  • S. Piraino
  • A. Talà
  • F. Boero
  • P. Alifano
Original Article


Luminous bacteria are isolated from both Hydrozoa and Bryozoa with chitinous structures on their surfaces. All the specimens of the examined hydroid species (Aglaophenia kirchenpaueri, Aglaophenia octodonta, Aglaophenia tubiformis, Halopteris diaphana, Plumularia setacea, Ventromma halecioides), observed under blue light excitation, showed a clear fluorescence on the external side of the perisarc (chitinous exoskeleton) around hydrocladia. In the bryozoan Myriapora truncata, luminous bacteria are present on the chitinous opercula. All the isolated luminous bacteria were identified on the basis of both phenotypic and genotypic analysis. The isolates from A. tubiformis and H. diaphana were unambiguously assigned to the species Vibrio fischeri. In contrast, the isolates from the other hydroids, phenotypically assigned to the species Vibrio harveyi, were then split into two distinct species by phylogenetic analysis of 16S rRNA gene sequences and DNA–DNA hybridization experiments. Scanning electron microscopy analysis and results of culture-based and culture-independent approaches enabled us to establish that luminous vibrios represent major constituents of the bacterial community inhabiting the A. octodonta surface suggesting that the interactions between luminous bacteria and the examined hydrozoan and bryozoan species are highly specific. These interactions might have epidemiological as well as ecological implications because of the opportunistic pathogenicity of luminous Vibrio species for marine organisms and the wide-distribution of the hydrozoan and bryozoan functioning as carriers.


Vibrio Hydroid Sterile Seawater Luminous Bacterium Bryozoan Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support was provided by MURST (COFIN and FIRB projects) and the European Community (MARBEF and IASON networks). Christian Vaglio helped in the field. Thanks are due to Dr. Marcella Elia for the technical assistance in the scanning electron microscopy.


  1. 1.
    Alcaide E, Gil Sanz C, Esteve D, Sanjuan D, Amaro C, Silveira L (2001) Vibrio harveyi disease in seahorse, Hippocampus sp. J Fish Dis 2:311–313CrossRefGoogle Scholar
  2. 2.
    Almashanu S, Gendler I, Hadar R, Kuhn J (1996) Interspecific luciferase b subunit hybrids between Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi. Prot Eng 9:803–809CrossRefGoogle Scholar
  3. 3.
    Alsina M, Blanch AR (1994) A set of keys for biochemical identification of environmental Vibrio species. J Appl Bacteriol 76:79–85PubMedGoogle Scholar
  4. 4.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  5. 5.
    Baumann P, Baumann L (1984) Genus II. Photobacterium Beijerinck 1889. In: Kreig NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol. 1. Williams & Wilkins, BaltimoreGoogle Scholar
  6. 6.
    Baumann P, Baumann L, Bang SS, Woolkalis MJ (1980) Revaluation of the taxonomy of Vibrio, Beneckea, and Photobacterium-abolition of the genus Beneckea. Curr Microbiol 4:127–133CrossRefGoogle Scholar
  7. 7.
    Baumann PS, Schubert RHW (1984) The family II Vibrionaceae Veron. In: Krieg NR (ed) Bergey's manual of systematic bacteriology, vol. 1. Williams & Williams, BaltimoreGoogle Scholar
  8. 8.
    Berger LR, Reynolds DM (1958) The chitinase system of a strain of Streptomyces griseus. Biochem Biophys Acta 29:522–534PubMedCrossRefGoogle Scholar
  9. 9.
    Boero F, Gravili C, Pagliara P, Piraino S, Bouillon J, Schmid V (1998) The cnidarian premises of metazoan evolution: from triploblasty, to coelom formation, to metamere. Ital J Zool 65:5–9CrossRefGoogle Scholar
  10. 10.
    Boettcher KJ, Ruby EG (1990) Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J Bacteriol 172:3701–3706PubMedGoogle Scholar
  11. 11.
    Bouillon J (1995) Classe des Hydrozoaires (Hydrozoa Owen, 1843). In: Grassé PP, Doumenc D (eds) Traité de Zoologie. Masson, ParisGoogle Scholar
  12. 12.
    Bouillon J, Medel MD, Pagès F, Gili JM, Boero F, Gravili C (2004) Fauna of the Mediterranean Hydrozoa. Sci Mar 68:5–438Google Scholar
  13. 13.
    Brown JK (1994) Bootstrap hypothesis tests for evolutionary trees and other dendrograms. Proc Natl Acad Sci U S A 91:12293–12297PubMedCrossRefGoogle Scholar
  14. 14.
    Carli A, Pane L, Casareto L, Bertone S, Pruzzo C (1993) Occurrence of Vibrio alginolyticus in Ligurian coast rock pools (Tyrrhenian Sea, Italy) and its association with the copepod Tigriopus fulvus (Fisher 1860). Appl Environ Microbiol 59:1960–1962PubMedGoogle Scholar
  15. 15.
    Carman KR, Dobbs FC (1997) Epibiotic microorganisms on copepods and other aquatic crustaceans. Micros Res Tech 37:116–135CrossRefGoogle Scholar
  16. 16.
    DeLoney CR, Bartley TM, Visick KL (2002) Role for phosphoglucomutase in Vibrio fischeriEuprymna scolopes symbiosis. J Bacteriol 184:5121–5129PubMedCrossRefGoogle Scholar
  17. 17.
    Di Giacomo M, Paolino M, Silvestro D, Vigliotta G, Imperi F, Visca P, Alifano P, Parente D (2007) Microbial community structure and dynamics of dark fire-cured tobacco fermentation. Appl Environ Microbiol 73:825–837PubMedCrossRefGoogle Scholar
  18. 18.
    Ducklow HW, Mitchell R (1979) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24:4715–4725Google Scholar
  19. 19.
    Farmer JJ III, Janda JM, Brenner FW, Cameron DN, Birkhead KM (2005) Genus 1. Vibrio Pacini 1854, 411AL. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey's manual of systematic bacteriology the proteobacteria part B the gammaproteobacteria vol. 2. 2nd edn. Springer, New YorkGoogle Scholar
  20. 20.
    Fletcher M, Marshall KC (1982) Are solid surfaces of ecological significance to aquatic bacteria? Adv Microbial Ecol 6:199–236Google Scholar
  21. 21.
    Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548PubMedGoogle Scholar
  22. 22.
    Garrity G, Brenner DJ, Krieg NR, Staley JR (2005) Bergey's manual of systematic bacteriology, 2nd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  23. 23.
    Gillis M, De Ley J, De Cleene M (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153PubMedCrossRefGoogle Scholar
  24. 24.
    Gomez-Gil B, Soto-Rodríguez S, García-Gasca A, Roque A, Vazquez-Juarez R, Thompson FL, Swings J (2004) Molecular identification of Vibrio harveyi-related isolates associated with diseased aquatic organisms. Microbiology 150:1769–1777PubMedCrossRefGoogle Scholar
  25. 25.
    Hood MA, Meyers SP (1977) Microbiological and chitinoclastic activities associated with Penaeus setiferus. J Oceanogr Soc Jpn 33:235–241CrossRefGoogle Scholar
  26. 26.
    Jawahar AT, Keleemur RM, Leema JMT (1996) Bacterial disease in cultured spiny lobster, Panulirus homarus (Linnaeus). J Aquacult Trop 11:187–192Google Scholar
  27. 27.
    Johnson CR, Muir DG, Reysenbach AL (1991) Characteristic bacteria associated with surfaces of coralline algae: a hypothesis for bacterial induction of marine invertebrate larvae. Mar Ecol Prog Ser 74:281–294CrossRefGoogle Scholar
  28. 28.
    Kaneko T, Colwell RR (1975) Adsorption of Vibrio parahaemolyticus onto chitin and copepods. Appl Microbiol 29:269–274PubMedGoogle Scholar
  29. 29.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  30. 30.
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959PubMedCrossRefGoogle Scholar
  31. 31.
    Lavilla-Pitogo CR, Leano EM, Paner MG (1990) Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 91:1–13CrossRefGoogle Scholar
  32. 32.
    Lavilla-Pitogo CR, Leano EM, Paner MG (1998) Mortalities of pond-cultured juvenile shrimp, Penaeus monodon, associated with dominance of luminescent vibrios in the rearing environment. Aquaculture 164:337–349CrossRefGoogle Scholar
  33. 33.
    Lee K-H, Ruby EG (1995) Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal seawater. Appl Environ Microbiol 61:278–283PubMedGoogle Scholar
  34. 34.
    Maugeri TL, Carbone M, Fera MT, Irrera GP, Gugliandolo C (2004) Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J Appl Microbiol 97:354–361PubMedCrossRefGoogle Scholar
  35. 35.
    McCann J, Stabb EV, Millikan DS, Ruby EG (2003) Population dynamics of Vibrio fischeri during infection of Euprymna scolopes. Appl Environ Microbiol 69:5928–5934PubMedCrossRefGoogle Scholar
  36. 36.
    McConaughy BL, Laird CD, McCarthy BJ (1969) Nucleic acid reassociation in formamide. Biochemistry 8:3289–3295PubMedCrossRefGoogle Scholar
  37. 37.
    Nealson HK, Haygood GM, Tebo MB, Roman M, Miller E, McCosker EJ (1984) Contribution by symbiotically luminous fishes to the occurrence and bioluminescence of luminous bacteria in seawater. Microb Ecol 10:69–77CrossRefGoogle Scholar
  38. 38.
    Nishiguchi MK, Ruby EG, McFall-Ngai MJ (1998) Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in sepiolid squid–Vibrio symbioses. Appl Environ Microbiol 64:3209–3213PubMedGoogle Scholar
  39. 39.
    Pass DA, Dybdahl R, Mannion MM (1987) Investigation into the causes of mortality of the pearl oyster, Pinctada maxima (Jamson), in Western Australia. Aquaculture 65:149–169CrossRefGoogle Scholar
  40. 40.
    Pizzuto M, Hirst RG (1995) Classification of isolates of Vibrio harveyi virulent to Penaeus monodon larvae by protein profile analysis and M13 DNA fingerprinting. Dis Aquat Org 21:61–68CrossRefGoogle Scholar
  41. 41.
    Pujalte MJ, Ortigosa M, Macian MC, Garay E (1999) Aerobic and facultative anaerobic heterotrophic bacteria associated to Mediterranean oysters and seawater. Int Microbiol 2:259–266PubMedGoogle Scholar
  42. 42.
    Ramesh A, Venugopalan VK (1984) Colloque International de bactériologie marine. Actes de colloques. IFREMER, CNRS, Brest, pp 1–5Google Scholar
  43. 43.
    Riedl R (1970) Fauna und Flora der Adria, 2nd edn. Verlag Paul Parey, HamburgGoogle Scholar
  44. 44.
    Rosowski JR (1992) Specificity of bacterial attachment sites on the filamentous diatom Navicula confervacea (Bacillariophyceae). Can J Microbiol 38:676–686CrossRefGoogle Scholar
  45. 45.
    Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379PubMedGoogle Scholar
  46. 46.
    Ruby EG, Lee K-H (1998) The Vibrio fischeriEuprymna scolopes light organ association: current ecological paradigms. Appl Environ Microbiol 64:805–812PubMedGoogle Scholar
  47. 47.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  48. 48.
    Sambrook J, Russel DW (2001) Molecular cloning in laboratory. Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  49. 49.
    Santavy DL, Colwell RR (1990) Comparison of bacterial communities associated with the Caribbean sclerosponge Ceratoporella nicholsoni and ambient seawater. Mar Ecol Prog Ser 67:73–82CrossRefGoogle Scholar
  50. 50.
    Stabili L, Gravili C, Piraino S, Boero F, Alifano P (2006) Vibrio harveyi associated with Aglaophenia octodonta (Hydrozoa, Cnidaria). Microb Ecol 52:603–608PubMedCrossRefGoogle Scholar
  51. 51.
    Tamplin ML, Gauzens AL, Huq AL, Sack DA, Colwell RR (1990) Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56:1977–1980PubMedGoogle Scholar
  52. 52.
    Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J (2005) Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115PubMedCrossRefGoogle Scholar
  53. 53.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  54. 54.
    Thompson FL, Hoste B, Vandemeulebroecke K, Engelbeen K, Denys R, Swings J (2002) Vibrio trachuri Iwamoto et al. 1995 is a junior synonym of Vibrio harveyi (Johnson and Shunk 1936) Baumann et al. 1981. Int J Syst Evol Microbiol 52:973–976PubMedCrossRefGoogle Scholar
  55. 55.
    Thompson FL, Hoste B, Vandemeulebroecke K, Swings J (2001) Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24:520–538PubMedCrossRefGoogle Scholar
  56. 56.
    Venkateswaran K, Kim SW, Nakano H, Onbè T, Hashimoto H (1989) The association of Vibrio parahaemolyticus serotypes with zooplankton and its relationship with bacterial indicators of pollution. Syst Appl Microbiol 11:194–201Google Scholar
  57. 57.
    Vidgen M, Carson J, Higgins M, Owens L (2006) Changes to the phenotypic profile of Vibrio harveyi when infected with the Vibrio harveyi myovirus-like (VHML) bacteriophage. J Appl Microbiol 100:481–487PubMedCrossRefGoogle Scholar
  58. 58.
    Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, Massardo DR, Prati MV, De Bellis L, Alifano P (2007) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic gamma-proteobacterium. Appl Environ Microbiol 73:3556–3565PubMedCrossRefGoogle Scholar
  59. 59.
    Visick KL, McFall-Ngai MJ (2000) An exclusive contract: specificity in the Vibrio fischeriEuprymna scolopes partnership. J Bacteriol 182:1779–1787PubMedCrossRefGoogle Scholar
  60. 60.
    Walls JT, Ritz DA, Blackman MJ (1993) Fouling, surface bacteria and antibacterial agents of four bryozoan species found in Tasmania, Australia. Exp Mar Biol Ecol 169:1–13CrossRefGoogle Scholar
  61. 61.
    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  62. 62.
    West PA, Colwell RR (1984) Identification and classification of vibrionaceae: an overview. In: Colwell RR (ed) Vibrios in the environment. Wiley, New YorkGoogle Scholar
  63. 63.
    Whistler CA, Ruby EG (2003) GacA regulates symbiotic colonization traits of Vibrio fischeri and facilitates a beneficial association with an animal host. J Bacteriol 185:7202–7212PubMedCrossRefGoogle Scholar
  64. 64.
    Zorrilla I, Arijo S, Chabrillon M, Diaz P, Martinez-Manzanares E, Balebona MC, Morinigo MA (2002) Vibrio species isolated from diseased farmed sole, Solea senegalensis. J Fish Dis 26:103–108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L. Stabili
    • 1
    • 2
    Email author
  • C. Gravili
    • 1
  • S. M. Tredici
    • 1
  • S. Piraino
    • 1
  • A. Talà
    • 1
  • F. Boero
    • 1
  • P. Alifano
    • 1
  1. 1.Di.S.Te.B.A.University of SalentoLecceItaly
  2. 2.Istituto Ambiente Marino Costiero, Sezione di Taranto, CNRTarantoItaly

Personalised recommendations