Microbial Ecology

, Volume 56, Issue 3, pp 525–537 | Cite as

Bacterial Diversity of the Broadbalk ‘Classical’ Winter Wheat Experiment in Relation to Long-Term Fertilizer Inputs

  • Lesley A. OgilvieEmail author
  • Penny R. Hirsch
  • Andrew W. B. Johnston
Original Article


With more than 160 years of contrasting fertilizer regimes, the Broadbalk winter wheat experiment represents a unique experimental resource for studying the effects of long-term fertilizer application on microbial population diversity. Using DGGE and clone library analysis, we report here on eubacterial species diversity (16S rRNA gene) and diversity within two sets of gene products associated with microbial N acquisition: NifH (nitrogen fixation) and AmtB (ammonium transport). Comparisons were made within and between soils treated with mineral N fertilizer, farmyard manure or receiving no fertilizer. Analysis of 16S rRNA gene DGGE profiles showed no clear patterns to qualitatively distinguish bacterial community structure between the three different treatments (P > 0.05), with all samples containing a range of eubacterial taxa similar to those that are characteristic of soil bacteria reported elsewhere. Intra-plot heterogeneity was high and of a similar magnitude to that between treatments. This lack of qualitative between plot differences was echoed in the representative sequences of 16S rRNA, nifH, and amtB genes in the various samples. Taken together, both phylogenetic and functional gene analyses showed bacterial communities in the Broadbalk-trial soil were very stable and relatively non-responsive to long-term management of balanced fertilizer inputs.


nifH Gene Rhodopseudomonas Palustris NifH Sequence ANOSIM Analysis Fertilizer Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the NERC Environmental Genomics Initiative. Many thanks to Marg Wexler and Ian Clark for invaluable technical advice on molecular protocols and Paul Poulton for supplying data on the Broadbalk plots. Thanks also to the anonymous reviewers who helped to significantly improve this manuscript. Rothamsted Research, UK receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the UK.


  1. 1.
    Alcock RE, Johnston AE, McGrath SP, Berrow ML, Jones KC (1993) Long-term changes in the polychlorinated biphenyl content of United Kingdom soils. Environ Sci and Tech 27:1918–192CrossRefGoogle Scholar
  2. 2.
    Altschul SF, Gish W, Miler W, Myers EW, Lipman DJ (1990) Basic local alignment tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. 3.
    Arcondéguy T, van Heeswijk WC, Merrick M (1999) Studies on the roles of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control. FEMS Microbiol Lett 180:263–270PubMedCrossRefGoogle Scholar
  4. 4.
    Bearchell SJ, Fraaije BA, Shaw MJ, Fitt BDL (2005) Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proc Natl Acad Sci U S A 102:5438–5442PubMedCrossRefGoogle Scholar
  5. 5.
    Borneman J, Scroch PW, O’Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943PubMedGoogle Scholar
  6. 6.
    Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12PubMedCrossRefGoogle Scholar
  7. 7.
    Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  8. 8.
    Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, UK, p 144Google Scholar
  9. 9.
    Clegg CD, Lovell RD, Hobbs PJ (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soils. FEMS Microbiol Ecol 43:263–270CrossRefPubMedGoogle Scholar
  10. 10.
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443PubMedCrossRefGoogle Scholar
  11. 11.
    Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington DC, pp 345–352Google Scholar
  12. 12.
    Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230PubMedCrossRefGoogle Scholar
  13. 13.
    Enwall K, Nyberg K, Bertilsson S, Cederlund H, Stenstrom J, Hallin S (2007) Long term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Boil Chem 39:106–115CrossRefGoogle Scholar
  14. 14.
    Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364PubMedCrossRefGoogle Scholar
  15. 15.
    Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643PubMedCrossRefGoogle Scholar
  16. 16.
    Gadberry MD, Malcomber ST, Doust AN, Kellog EA (2005) Primaclade—a flexible tool to find conserved PCR primers across multiple species. Bioinformatics 21:1263–1264PubMedCrossRefGoogle Scholar
  17. 17.
    Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809PubMedCrossRefGoogle Scholar
  18. 18.
    Goulding KWT, Bailey NJ, Bradbury NJ, Hargreaves M, Howe DV, Murphy PR, Poulton PR, Willison TW (1998) Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytol 139:49–58CrossRefGoogle Scholar
  19. 19.
    Grzymski JJ, Carter BJ, DeLong EF, Feldman RA, Ghadiri A, Murray AE (2006) Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Appl Environ Microbiol 72:1532–1541PubMedCrossRefGoogle Scholar
  20. 20.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  21. 21.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  22. 22.
    Huber T, Faulkner P, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319PubMedCrossRefGoogle Scholar
  23. 23.
    Iniquez AL, Yuemei D, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17:1078–1086CrossRefGoogle Scholar
  24. 24.
    Ishii K, Fukui M (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl Environ Microbiol 67:3753–3755PubMedCrossRefGoogle Scholar
  25. 25.
    Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129CrossRefGoogle Scholar
  26. 26.
    Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728PubMedCrossRefGoogle Scholar
  27. 27.
    Johnston AWB, Li Y, Ogilvie L (2005) Metagenomic marine nitrogen fixation—feast or famine? Trends Microbiol 13:416–420PubMedCrossRefGoogle Scholar
  28. 28.
    Kleiner D (1993) Ammonium transport systems—an overview. In: Bakker EP (ed) Alkali cation transport systems in prokaryotes. CRC Press, Florida, pp 379–396Google Scholar
  29. 29.
    Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar S, Tumara K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  31. 31.
    Loisel P, Harmand J, Zemb O, Latrille E, Lobry C, Delgenes J-P, Gordon J-J (2006) Denaturing gradient electrophoresis (DGE) and single strand conformation polymorphism (SSCP) molecular fingerprintings revisited by simulation and used as a tool to measure microbial diversity. Environ Microbiol 8:720–731PubMedCrossRefGoogle Scholar
  32. 32.
    Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461CrossRefGoogle Scholar
  33. 33.
    Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359PubMedCrossRefGoogle Scholar
  34. 34.
    McCaig AE, Glover LA, Prosser JI (2001) Numerical analysis of grassland bacterial community structure under different land management regimes by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl Environ Microbiol 67:4554–4559PubMedCrossRefGoogle Scholar
  35. 35.
    Mehta MP, Butterfield DA, Baross JA (2003) Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol 69:960–970PubMedCrossRefGoogle Scholar
  36. 36.
    Meikeljohn J (1965) Azotobacter numbers on Broadbalk field, Rothamsted. Plant Soil 23:227–235CrossRefGoogle Scholar
  37. 37.
    Meletzus D, Rudnick P, Doetsch N, Green A, Kennedy C (1998) Characterization of the glnK-amtB operon of Azotobacter vinelandii. J Bacteriol 180:3260–3264PubMedGoogle Scholar
  38. 38.
    Mendum TA, Hirsch PR (2002) Changes in the population structure of beta-group autotrophic ammonia oxidising bacteria in arable soils in response to agricultural practice. Soil Biol Biochem 34:1479–1485CrossRefGoogle Scholar
  39. 39.
    Mendum TA, Sockett RE, Hirsch PR (1999) Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the β subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl Environ Microbiol 65:4155–4162PubMedGoogle Scholar
  40. 40.
    Michel-Reydellet N, Desnoues N, de Zamaroczy M, Elmerich C, Kaminski PA (1998) Characterisation of the glnK–amtB operon and the involvement of AmtB in methylammonium uptake in Azorhizobium caulinodans. Mol Gen Genet 258:671–677PubMedCrossRefGoogle Scholar
  41. 41.
    Miflin B (2000) Crop improvement in the 21st century. J Exp Bot 51:1–8PubMedCrossRefGoogle Scholar
  42. 42.
    Moisander PH, Shiue L, Steward GF, Jenkins BD, Bebout BM, Zehr JP (2006) Application of a nifH oligonucleotide microarray for profiling diversity of N2 fixing microorganisms in marine microbial mats. Environ Microbiol 8:1721–1735PubMedCrossRefGoogle Scholar
  43. 43.
    Moss SR, Storkey J, Cussans JW, Perryman SAM, Hewitt MV (2004) The Broadbalk long-term experiment at Rothamsted: what has it told us about weeds? Weed Sci 52:864–873CrossRefGoogle Scholar
  44. 44.
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  45. 45.
    Nutman PS (1968) Symbiotic nitrogen fixation: legume nodule bacteria . Rothamsted Report for 1968179–181Google Scholar
  46. 46.
    Okhuma M, Noda S, Kudo T (1999) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial communities in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934Google Scholar
  47. 47.
    Poly F, Ranjard L, Nazaret S, Gourbiere F, Monrozier LJ (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262PubMedCrossRefGoogle Scholar
  48. 48.
    Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multi-template PCR. Appl Environ Microbiol 64:3724–3730PubMedGoogle Scholar
  49. 49.
    Poulton P (2006) Rothamsted—the classical experiments. Lawes Agricutural Trust, Harpenden, United KingdomGoogle Scholar
  50. 50.
    Rangaraj P, Ryle MJ, Lanzilotta WM, Goodwin PJ, Dean DR, Shah VK, Ludden PW (1999) Inhibition of iron-molybdenum cofactor biosynthesis by L127D NifH and evidence for a complex formation between L127D NifH and NifNE*. J Biol Chem 274:29413–29419PubMedCrossRefGoogle Scholar
  51. 51.
    Rasmussen PE, Goulding KWT, Brown JR, Grace PR, Janzen HH, Korschens M (1998) Long-term agro-ecosystem experiments: assessing agricultural sustainability and global change. Science 282:893–896PubMedCrossRefGoogle Scholar
  52. 52.
    Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829PubMedCrossRefGoogle Scholar
  53. 53.
    Rusch DB, Halpern AL, Sutton G, Heidleberg KB, Wiliamson S, Yooseph S, Yu D, Eisen JA, Hoffman JA, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers Y-H, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77PubMedCrossRefGoogle Scholar
  54. 54.
    Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224PubMedCrossRefGoogle Scholar
  55. 55.
    Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild type and nif mutant strains. Mol Plant-Microb Interact 14:358–366CrossRefGoogle Scholar
  56. 56.
    Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Krämer R (1996) Functional and genetic characterization of the (methyl) ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271:5398–5403PubMedCrossRefGoogle Scholar
  57. 57.
    Silvertown J, Poulton P, Johnston E, Edwards M, Biss PM (2006) The Park Grass experiment 1856–2006: its contribution to ecology. J Ecol 94:1–14CrossRefGoogle Scholar
  58. 58.
    Soupene E, He L, Yan D, Kustu S (1998) Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci USA 95:7030–7034PubMedCrossRefGoogle Scholar
  59. 59.
    Steenworth KL, Jackson LE, Calderó FJ, Stromberg MR, Scow KM (2003) Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol Biochem 35:489–500CrossRefGoogle Scholar
  60. 60.
    Sun HY, Deng SP, Raun WR (2004) Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Appl Environ Microbiol 70:5868–5874PubMedCrossRefGoogle Scholar
  61. 61.
    Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015PubMedCrossRefGoogle Scholar
  62. 62.
    Thomas G, Coutts G, Merrick M (2000) The glnK-amtB operon: a conserved gene pair in prokaryotes. Trends Genet 16:11–14PubMedCrossRefGoogle Scholar
  63. 63.
    Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  64. 64.
    Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557PubMedCrossRefGoogle Scholar
  65. 65.
    Ulrich A, Becker R (2006) Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol Ecol 56:430–443PubMedCrossRefGoogle Scholar
  66. 66.
    USDA (1999) Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys 2nd ed USDA Agriculture handbook No 436, US Gov print Office, Washington, DCGoogle Scholar
  67. 67.
    Uthicke S, McGuire K (2007) Bacterial communities in Great Barrier Reef calcareous sediments: contrasting 16S rDNA libraries from nearshore and outer shelf reefs. Estuar Coast Shelf Sci 72:188–200CrossRefGoogle Scholar
  68. 68.
    van Dommelen A, Keijers V, Vanderleyden J, de Zamaroczy M (1998) (Methyl)ammonium transport in the nitrogen-fixing bacterium Azospirillum brasilense. J Bacteriol 180:2652–2659PubMedGoogle Scholar
  69. 69.
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy L, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  70. 70.
    von Wiren N, Merrick M (2004) Regulation and function of ammonium carriers in bacteria, fungi and plants. Topics Curr Gen 9:95–120Google Scholar
  71. 71.
    Waddell P, Steel M (1997) General time-reversible distances with unequal rates across sites: mixing gamma and inverse Gaussian distributions with invariant sites. Mol Phylogenet Evol 8:398–414PubMedCrossRefGoogle Scholar
  72. 72.
    Wakelin SA, Colloff MJ, Harvey PR, Marschner P, Gregg AL, Rogers SL (2007) The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundances under irrigated maize. FEMS Microbiol Ecol 59:661–670PubMedCrossRefGoogle Scholar
  73. 73.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriology 173:697–703Google Scholar
  74. 74.
    Widmer BT, Shaffer LA, Porteous RJ, Siedler (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregan cascade mountain range. Appl Environ Microbiol 65:374–383PubMedGoogle Scholar
  75. 75.
    Witty PJ, Keay PJ, Frogatt PJ, Dart (1979) Algal nitrogen fixation on temperate arable fields: the Broadbalk experiment. Plant Soil 52:151–164CrossRefGoogle Scholar
  76. 76.
    Zehr JP, Crumbliss LL, Church MJ, Omoregie EO, Jenkins BD (2003) Nitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes. Biotechniques 35:996–1005PubMedGoogle Scholar
  77. 77.
    Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang Y, Li D, Wang H, Xiao Q, Liu X (2006) Molecular diversity of nitrogen-fixing bacteria from the Tibetan Plateau, China. FEMS Microbiol Lett 260:134–142PubMedCrossRefGoogle Scholar
  79. 79.
    Zhao FJ, Knights JS, Hu ZY, McGrath SP (2003) Stable sulfur isotope ratio indicates long-term changes in sulfur deposition in the Broadbalk experiment since 1845. J Env Qual 32:33–39CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lesley A. Ogilvie
    • 1
    • 2
    Email author
  • Penny R. Hirsch
    • 1
  • Andrew W. B. Johnston
    • 2
  1. 1.Centre for Soils and Ecosystem Function, Department of Plant Pathology and MicrobiologyRothamsted ResearchHertfordshireUK
  2. 2.School of Biological SciencesUniversity of East AngliaNorfolkUK

Personalised recommendations