Microbial Ecology

, Volume 56, Issue 2, pp 383–389 | Cite as

Relationship of Geographic Distance, Depth, Temperature, and Viruses with Prokaryotic Communities in the Eastern Tropical Atlantic Ocean

  • Christian WinterEmail author
  • Markus M. Moeseneder
  • Gerhard J. Herndl
  • Markus G. Weinbauer
Brief Report


The richness and biogeographical distribution pattern of bacterial and archaeal communities was assessed by terminal restriction fragment length polymorphism analysis of polymerase chain reaction-amplified fragments of the 16S rRNA gene at the surface (15–25 m depth), in the deep chlorophyll maximum layer (DCM; 50 m depth), and deep waters (75–1000 m depth) of the eastern tropical Atlantic Ocean. Additionally, prokaryotic and viral abundance and the frequency of infected prokaryotic cells (FIC) were determined along with physico-chemical parameters to identify factors influencing prokaryotic richness and biogeography. Viral abundance was highest in the DCM layer averaging 45.5 × 106 ml−1, whereas in the mixed surface layer and in the waters below the DCM, average viral abundance was 11.3 × 106 and 4.3 × 106 ml−1, respectively. The average estimate of FIC was 8.3% in the mixed surface layer and the DCM and 2.4% in deeper waters. FIC was positively related to prokaryotic and viral abundance and negatively to archaeal richness. There was no detectable effect of geographic distance (maximum distance between stations ∼4600 km) or differences between water masses on bacterial and archaeal community composition. Bacterial communities showed a clear depth zonation, whereas changes in archaeal community composition were related to temperature and FIC. The results indicate that planktonic archaeal virus host systems are a dynamic component of marine ecosystems under natural conditions.


Archaea Mantel Test Terminal Restriction Fragment Length Polymorphism Archaeal Community Prokaryotic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the captain and crew of R/V Pelagia for their support at sea. We are grateful to G. J. Brummer for the opportunity to join the cruise. We would like to thank three anonymous reviewers for their helpful comments. Funding was provided by the Dutch Science Foundation (NWO-ALW grant 809.33.004) and the Royal NIOZ. Preparation of the manuscript was supported by a Marie Curie postdoctoral fellowship to CW (project ILVIROMAB, no. 007712).


  1. 1.
    Bouvier T, del Giorgio PA (2007) Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol 9:287–297PubMedCrossRefGoogle Scholar
  2. 2.
    de Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758PubMedCrossRefGoogle Scholar
  3. 3.
    DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689PubMedCrossRefGoogle Scholar
  4. 4.
    DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, Martinez A, Sullivan MB, Edwards E, Rodriguez BB, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503PubMedCrossRefGoogle Scholar
  5. 5.
    Fuhrman JA, Davis AA (1997) Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285CrossRefGoogle Scholar
  6. 6.
    Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, Pernthaler J (2005) Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71:2303–2309PubMedCrossRefGoogle Scholar
  7. 7.
    Hewson I, Fuhrman JA (2007) Covariation of viral parameters with bacterial assemblage richness and diversity in the water column and sediments. Deep-Sea Res I 54:811–830CrossRefGoogle Scholar
  8. 8.
    Hewson I, Winget DM, Williamson KE, Fuhrman JA, Wommack KE (2006) Viral and bacterial assemblage covariance in oligotrophic waters of the West Florida Shelf (Gulf of Mexico). J Mar Biol Ass UK 86:591–603CrossRefGoogle Scholar
  9. 9.
    Hughes Martiny JB, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins AA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nature Rev Microbiol 4:102–112CrossRefGoogle Scholar
  10. 10.
    Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, Druffel ERM, Pearson A (2006) Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc Natl Acad Sci U S A 103:6442–6447PubMedCrossRefGoogle Scholar
  11. 11.
    Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510PubMedCrossRefGoogle Scholar
  12. 12.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–176Google Scholar
  13. 13.
    Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  14. 14.
    López-García P, López-López A, Moreira D, Rodríguez-Valera F (2001) Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol Ecol 36:193–202PubMedGoogle Scholar
  15. 15.
    Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  16. 16.
    Massana R, DeLong EF, Pedrós-Alió C (2000) A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microbiol 66:1777–1787PubMedCrossRefGoogle Scholar
  17. 17.
    Moeseneder MM, Winter C, Arrieta JM, Herndl GJ (2001a) Terminal-restriction fragment length polymorphism (T-RFLP) screening of a marine archaeal clone library to determine the different phylotypes. J Microb Methods 44:159–172CrossRefGoogle Scholar
  18. 18.
    Moeseneder MM, Winter C, Herndl GJ (2001b) Horizontal and vertical complexity of attached and free-living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints. Limnol Oceanogr 46:95–107Google Scholar
  19. 19.
    Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595PubMedGoogle Scholar
  20. 20.
    Murray AG, Jackson GA (1992) Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar Ecol Prog Ser 89:103–116CrossRefGoogle Scholar
  21. 21.
    Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118CrossRefGoogle Scholar
  22. 22.
    Ouverney CC, Fuhrman JA (2000) Marine planktonic archaea take up amino acids. Appl Environ Microbiol 66:4829–4833PubMedCrossRefGoogle Scholar
  23. 23.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  24. 24.
    Schwalbach MS, Hewson I, Fuhrman JA (2004) Viral effects on bacterial community composition in marine plankton microcosms. Aquat Microb Ecol 34:117–127CrossRefGoogle Scholar
  25. 25.
    Teira E, von Aken H, Veth C, Herndl GJ (2006a) Archaeal uptake of enantiomeric amino acids in the meso- and bathypelagic waters of the North Atlantic. Limnol Oceanogr 51:60–69Google Scholar
  26. 26.
    Teira E, Lebaron P, van Aken H, Herndl GJ (2006b) Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol Oceanogr 51:2131–2144CrossRefGoogle Scholar
  27. 27.
    Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328CrossRefGoogle Scholar
  28. 28.
    Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13:19–27CrossRefGoogle Scholar
  29. 29.
    Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181PubMedCrossRefGoogle Scholar
  30. 30.
    Weinbauer MG, Winter C, Höfle MG (2002) Reconsidering transmission electron microscopy based estimates of viral infection of bacterioplankton using conversion factors derived from natural communities. Aquat Microb Ecol 27:103–110CrossRefGoogle Scholar
  31. 31.
    Winter C, Moeseneder MM, Herndl GJ (2001) Impact of UV radiation on bacterioplankton community composition. Appl Environ Microbiol 67:665–672PubMedCrossRefGoogle Scholar
  32. 32.
    Winter C, Smit A, Herndl GJ, Weinbauer MG (2004) Impact of virioplankton on archaeal and bacterial community richness as assessed in seawater batch cultures. Appl Environ Microbiol 70:804–813PubMedCrossRefGoogle Scholar
  33. 33.
    Winter C, Smit A, Herndl GJ, Weinbauer MG (2005) Linking bacterial richness with viral abundance and prokaryotic activity. Limnol Oceanogr 50:968–977CrossRefGoogle Scholar
  34. 34.
    Wuchter C, Abbas B, Coolen MJL, Herfort L, von Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damsté JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A 103:12317–12322PubMedCrossRefGoogle Scholar
  35. 35.
    Wuchter C, Schouten S, Boschker HTS, Damsté JSS (2003) Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiol Lett 219:203–207PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Christian Winter
    • 1
    Email author
  • Markus M. Moeseneder
    • 2
  • Gerhard J. Herndl
    • 3
  • Markus G. Weinbauer
    • 4
    • 5
  1. 1.University of British Columbia, EOS-OceanographyVancouverCanada
  2. 2.Dept. of Freshwater EcologyUniversity of ViennaViennaAustria
  3. 3.Dept. Biological OceanographyRoyal Netherlands Institute for Sea ResearchTexelThe Netherlands
  4. 4.Laboratoire d’ Océanographie de VillefrancheUniversité Pierre et Marie Curie-Paris 6Villefranche-sur-Mer CEDEXFrance
  5. 5.Microbial Ecology and Biogeochemistry Group, CNRSLaboratoire d’Océanographie de VillefrancheVillefranche-sur-Mer CEDEXFrance

Personalised recommendations