Microbial Ecology

, Volume 55, Issue 4, pp 723–736 | Cite as

Functional Characterization of the Microbial Community in Geothermally Heated Marine Sediments

  • Antje Rusch
  • Jan P. Amend
Original Article


The microbial population of geothermally heated sediments in a shallow bay of Vulcano Island (Italy) was characterized with respect to metabolic activities and the putatively catalyzing hyperthermophiles. Site-specific anoxic culturing media, most of which were amended with combinations of electron donors (glucose or carboxylic acids) and acceptors (sulfate), were used for selective enrichment of metabolically defined subpopulations. The mostly archaeal chemoautotrophs produced formate at rates of 3.25 and 0.46 fmol cell−1 day−1 with and without sulfate, respectively. The glucose fermenting heterotrophs produced acetate (18 fmol cell−1 day−1) and lactate (2.6 fmol cell−1 day−1) and were identified as predominantly Thermus sp. and coccoid archaea. These archaeal cells also metabolized lactate (5.6 fmol cell−1 day−1), but neither formate nor acetate. The heterotrophic culture enriched on formate/acetate/propionate/sulfate utilized mainly formate (27 fmol cell−1 day−1) and lactate (89–195 fmol cell−1 day−1), and consumed sulfate (38–68 fmol cell−1 day−1). These formate or lactate consuming sulfate reducers were dominated by Archaeoglobales (7% in situ) and unidentified Archaea. The in situ benthic community comprised 15% Crenarchaeota, a significant group only in the autotrophic cultures, and 3% Thermus sp., the putatively predominant group involved in fermentative metabolism. The role of Thermoccales (4% in situ) remained undisclosed in our experiments. This first comprehensive data set established plausible links between several groups of hyperthermophiles in shallow marine hydrothermal systems, their metabolic function within the benthic microbial community, and biogeochemical turnover rates.


Archaea Sulfate Reducer Enrichment Culture Incubation Experiment Heterotrophic Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully appreciate the support of Sergio Gurrieri (INGV Palermo) during our excursion to Vulcano Island. We thank Andrea Amend for preparing growth media and for the chromatographic analyses. This research was funded by NSF grant EAR-0447231.


  1. 1.
    Alfredsson GA, Kristjansson JK (1995) Ecology, distribution and isolation of Thermus. In: Sharp R, Williams RAD (eds) Thermus species. Plenum, New YorkGoogle Scholar
  2. 2.
    Amend JP, Amend AC, Valenza M (1998) Determination of volatile fatty acids in the hot springs of Vulcano, Aeolian Islands, Italy. Org Geochem 28:699–705CrossRefGoogle Scholar
  3. 3.
    Amend JP, Plyasunov AV (2001) Carbohydrates in thermophile metabolism: calculation of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures. Geochim Cosmochim Acta 65:3901–3917CrossRefGoogle Scholar
  4. 4.
    Amend JP, Rogers KL, Shock EL, Gurrieri S, Inguaggiato S (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1:37–58CrossRefGoogle Scholar
  5. 5.
    Amend JP, Rogers KL, Meyer-Dombard DR (2004) Microbially mediated sulfur redox: Energetics in marine hydrothermal vent systems. In: Amend JP, Edwards KJ & Lyons TW (eds) Sulfur biogeochemistry-past and present. Geological Society of America Special Paper 379:17–34.Google Scholar
  6. 6.
    Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243PubMedCrossRefGoogle Scholar
  7. 7.
    Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV et al (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151PubMedCrossRefGoogle Scholar
  8. 8.
    Bueno C, Villegas ML, Bertolotti SG, Previtali CM, Neumann MG, Encinas MV (2002) The excited-state interaction of resazurin and resorufin with amines in aqueous solutions: photophysics and photochemical reaction. Photochem Photobiol 76:385–390PubMedCrossRefGoogle Scholar
  9. 9.
    Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov. represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13:24–28Google Scholar
  10. 10.
    Burggraf S, Mayer T, Amann R, Schadhauser S, Woese CR, Stetter KO (1994) Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 60:3112–3119PubMedGoogle Scholar
  11. 11.
    Castro H, Reddy KR, Ogram A (2002) Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl Environ Microbiol 68:6129–6137PubMedCrossRefGoogle Scholar
  12. 12.
    Chen F, Hodson RE (2001) In situ PCR/RT-PCR coupled with in situ hybridization for detection of functional gene and gene expression in prokaryotic cells. Methods Microbiol 30:409–424CrossRefGoogle Scholar
  13. 13.
    Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697PubMedCrossRefGoogle Scholar
  14. 14.
    Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444PubMedGoogle Scholar
  15. 15.
    Detmers J, Brüchert V, Habicht KS, Kuever J (2001) Diversity of sulfur isotope fractionations by sulfate reducing prokaryotes. Appl Environ Microbiol 67:888–894PubMedCrossRefGoogle Scholar
  16. 16.
    Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772PubMedCrossRefGoogle Scholar
  17. 17.
    Elsgaard L, Isaksen MF, Jørgensen BB, Alayse A-M, Jannasch HW (1994) Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58:3335–3343CrossRefGoogle Scholar
  18. 18.
    Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513PubMedCrossRefGoogle Scholar
  19. 19.
    Gugliandolo C, Italiano F, Maugeri TL, Inguaggiato S, Caccamo D, Amend JP (1999) Submarine hydrothermal vents of the Aeolian Islands: relationship between microbial communities and thermal fluids. Geomicrobiol J 16:105–117CrossRefGoogle Scholar
  20. 20.
    Galagan JE, Nusbaum C, Roy A et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542PubMedCrossRefGoogle Scholar
  21. 21.
    Hafenbradl D, Keller M, Dirmeier R, Rachel R, Rossnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166:308–314PubMedCrossRefGoogle Scholar
  22. 22.
    Harmsen HJM, Prieur D, Jeanthon C (1997a) Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl Environ Microbiol 63:2876–2883PubMedGoogle Scholar
  23. 23.
    Harmsen HJM, Prieur D, Jeanthon C (1997b) Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol 63:4061–4068PubMedGoogle Scholar
  24. 24.
    Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456PubMedCrossRefGoogle Scholar
  25. 25.
    Jørgensen BB, Isaksen MF, Jannasch HW (1992) Bacterial sulfate reduction above 100°C in deep-sea hydrothermal vent systems. Science 258:1756–1757PubMedCrossRefGoogle Scholar
  26. 26.
    Kallmeyer J, Boetius A (2004) Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl Environ Microbiol 70:1231–1233PubMedCrossRefGoogle Scholar
  27. 27.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer K-H, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081PubMedCrossRefGoogle Scholar
  28. 28.
    Manaia CM, Hoste B, Gutierrez MC, Gillis M, Ventosa A, Kersters K, da Costa MS (1994) Halotolerant Thermus strains from marine and terrestrial hot springs belong to Thermus thermophilus (ex Oshima and Imahori, 1974) nom. rev. emend. Syst Appl Microbiol 17:526–532Google Scholar
  29. 29.
    Mandernack KW, Tebo BM (1999) In situ sulfide removal and CO2 fixation rates at deep-sea hydrothermal vents and the oxic/anoxic interface in Framvaren Fjord, Norway. Mar Chem 66:201–213CrossRefGoogle Scholar
  30. 30.
    Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600Google Scholar
  31. 31.
    Meyer-Dombard DR (2004) Geochemical constraints on microbial diversity of hydrothermal ecosystems in Yellowstone National Park. Ph.D. Thesis, Washington University in St. LouisGoogle Scholar
  32. 32.
    Nielsen JL, Juretschko S, Wagner M, Nielsen PH (2002) Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridisation and microautoradiography. Appl Environ Microbiol 68:4629–4636PubMedCrossRefGoogle Scholar
  33. 33.
    Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884PubMedCrossRefGoogle Scholar
  34. 34.
    Nogales B, Timmis KN, Nedwell DB, Osborn AM (2002) Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl Environ Microbiol 68:5017–5025PubMedCrossRefGoogle Scholar
  35. 35.
    Ouverney CC, Fuhrman JA (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65:1746–1752PubMedGoogle Scholar
  36. 36.
    Radianingtyas H, Wright PC (2003) Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 27:593–616PubMedCrossRefGoogle Scholar
  37. 37.
    Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedGoogle Scholar
  38. 38.
    Ravenschlag K, Sahm K, Amann R (2001) Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl Environ Microbiol 67:387–395PubMedCrossRefGoogle Scholar
  39. 39.
    Rogers KL, Amend JP (2006) Energetics of potential heterotrophic metabolisms in the marine hydrothermal system of Vulcano Island, Italy. Geochim Cosmochim Acta 70:6180–6200CrossRefGoogle Scholar
  40. 40.
    Romano I, Lama L, Moriello VS, Poli A, Gambacorta A, Nicolaus B (2004) Isolation of a new thermohalophilic Thermus thermophilus strain from hot spring, able to grow on a renewable source of polysaccharide. Biotechnol Lett 26:45–49PubMedCrossRefGoogle Scholar
  41. 41.
    Rusch A, Amend JP (2004) Order-specific 16S rRNA targeted oligonucleotide probes for (hyper)thermophilic archaea and bacteria. Extremophiles 8:357–366PubMedCrossRefGoogle Scholar
  42. 42.
    Rusch A, Walpersdorf E, de Beer D, Gurrieri S, Amend JP (2005) Microbial communities near the oxic/anoxic interface in the hydrothermal system of Vulcano Island, Italy. Chem Geol 224:169–182CrossRefGoogle Scholar
  43. 43.
    Sachs L (1997) Angewandte Statistik. Springer, BerlinGoogle Scholar
  44. 44.
    Santos MA, Williams RAD, da Costa MS (1989) Numerical taxonomic study of Thermus isolates from Portuguese hot springs. Syst Appl Microbiol 12:310–315Google Scholar
  45. 45.
    Schouten S, Wakeham SG, Hopmans EC, Sinnighe Damsté JS (2003) Biogeochemical evidence that thermophilic Archaea mediate the anaerobic oxidation of methane. Appl Environ Microbiol 69:1680–1686PubMedCrossRefGoogle Scholar
  46. 46.
    Schrenk MO, Kelley DS, Bolton SA, Baross JA (2004) Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ Microbiol 6:1086–1095PubMedCrossRefGoogle Scholar
  47. 47.
    Sharp R, Cossar D, Williams R (1995) Physiology and metabolism of Thermus. In: Sharp R, Williams RAD (eds) Thermus species. Plenum, New YorkGoogle Scholar
  48. 48.
    Sievert SM, Brinkhoff T, Muyzer G, Ziebis W, Kuever J (1999) Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine vent near Milos Island (Greece). Appl Environ Microbiol 65:3834–3842PubMedGoogle Scholar
  49. 49.
    Simmons S, Norris PR (2002) Acidophiles of saline water at thermal vents of Vulcano, Italy. Extremophiles 6:201–207PubMedCrossRefGoogle Scholar
  50. 50.
    Skoog A, Vlahos P, Rogers KL, Amend JP (2007) Concentrations, distributions, and energy yields of dissolved neutral aldoses in a shallow hydrothermal vent system of Vulcano, Italy. Organic Geochemistry 38:1416–1430Google Scholar
  51. 51.
    Snaidr J, Amann R, Huber I, Ludwig W, Schleifer K-H (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896PubMedGoogle Scholar
  52. 52.
    Sørensen AH, Torsvik VL, Torsvik T, Poulsen LK, Ahring BK (1997) Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes. Appl Environ Microbiol 63:3043–3050PubMedGoogle Scholar
  53. 53.
    Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov., a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173Google Scholar
  54. 54.
    Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124CrossRefGoogle Scholar
  55. 55.
    Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105° C. Syst Appl Microbiol 4:535–551Google Scholar
  56. 56.
    Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824PubMedCrossRefGoogle Scholar
  57. 57.
    Svensson E, Skoog A, Amend JP (2004) Concentration and distribution of dissolved amino acids in a shallow hydrothermal system, Vulcano Island (Italy). Org Geochem 35:1001–1014CrossRefGoogle Scholar
  58. 58.
    Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007PubMedCrossRefGoogle Scholar
  59. 59.
    Tor JM, Amend JP, Lovley DR (2003) Metabolism of organic compounds in anaerobic, hydrothermal sulphate-reducing marine sediments. Environ Microbiol 5:583–591PubMedCrossRefGoogle Scholar
  60. 60.
    Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, de Macario EC, Zabel H-P, Stetter KO, Winter J (1989) Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. Syst Appl Microbiol 11:151–160Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesWashington UniversitySt. LouisUSA
  2. 2.Department of Geology and GeophysicsUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations