Microbial Ecology

, Volume 55, Issue 3, pp 395–405 | Cite as

Dilution-to-Extinction Culturing of Psychrotolerant Planktonic Bacteria from Permanently Ice-covered Lakes in the McMurdo Dry Valleys, Antarctica

  • U. Stingl
  • J.-C. Cho
  • W. Foo
  • K. L. Vergin
  • B. Lanoil
  • S. J. Giovannoni
Original Article

Abstract

Lakes in the McMurdo Dry Valleys of Antarctica are characterized by a permanent ice cover and little or no anthropogenic influence. Although bacterial cultures have been obtained from these habitats, recent culture-independent studies indicate that the most abundant microbes in these systems are not yet cultivated. By using dilution-to-extinction cultivation methods with sterilized and nutrient-amended lake water as media, we isolated 148 chemotrophic psychrotolerant bacterial cultures from fresh surface water of Lake Fryxell and the east lobe of Lake Bonney and the hypersaline, suboxic bottom water from the west lobes of Lake Bonney. Screening of the 16S ribosomal ribonucleic acid (rRNA) genes of the cultures by restriction fragment length polymorphism (RFLP) yielded 57 putatively pure psychrotolerant, slow growing cultures grouped into 18 clusters. The sequencing of 16S rRNA genes of randomly selected representatives of each RFLP cluster revealed that the corresponding isolates belong to the Alphaproteobacteria (six RFLP patterns), Betaproteobacteria (six RFLP patterns), Bacteroidetes (four RFLP patterns), and Actinobacteria (two RFLP patterns). Phylogenetic analysis of the sequences showed that the vast majority of the isolates were not closely related to previously described species. Thirteen of 18 RFLP patterns shared a 16S ribosomal deoxyribonucleic acid sequence similarity of 97% or less with the closest described species, and four isolates had a sequence similarity of 93% or less with the nearest described species. Phylogenetic analysis showed that these sequences were representatives of deeply branching organisms in the respective phylum. A comparison of the isolates with 16S rRNA clone libraries prepared from the same environments showed substantial overlap, indicating that dilution-to-extinction culturing in natural lake water media can help isolate some of the most abundant organisms in these perennially ice-covered lakes.

References

  1. 1.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. 2.
    Ashbolt NJ (1990) Antarctic biotechnology—what is the potential? Aust J Biotechnol 4:103–105, 108PubMedGoogle Scholar
  3. 3.
    Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ Microbiol 2:227–237PubMedCrossRefGoogle Scholar
  4. 4.
    Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackebrandt E (2001) 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5:23–33PubMedCrossRefGoogle Scholar
  5. 5.
    Brinkmeyer R, Glockner FO, Helmke E, Amann R (2004) Predominance of beta-proteobacteria in summer melt pools on Arctic pack ice. Limnol Oceanogr 49:1013–1021CrossRefGoogle Scholar
  6. 6.
    Button DK (1993) Nutrient-limited microbial growth kinetics: overview and recent advances. Antonie van Leeuwenhoek 63:225–235PubMedCrossRefGoogle Scholar
  7. 7.
    Cho JC, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440PubMedCrossRefGoogle Scholar
  8. 8.
    Cho JC, Vergin KL, Morris RM, Giovannoni SJ (2004) Lentisphaera araneosa gen nov, sp nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ Microbiol 6:611–621PubMedCrossRefGoogle Scholar
  9. 9.
    Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885PubMedCrossRefGoogle Scholar
  10. 10.
    Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166Google Scholar
  11. 11.
    Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47:329–340PubMedCrossRefGoogle Scholar
  12. 12.
    Fry JC (1990) Oligotrophs. In: Edwards C (ed) Microbiology of extreme environments. Open Univ. Press, Milton Keynes, UK, pp 93–116Google Scholar
  13. 13.
    Gaidos E, Lanoil B, Thorsteinsson T, Graham A, Skidmore M, Han SK, Rust T, Popp B (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4:327–344PubMedCrossRefGoogle Scholar
  14. 14.
    Gich F, Schubert K, Bruns A, Hoffelner H, Overmann J (2005) Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl Environ Microbiol 71:5908–5919PubMedCrossRefGoogle Scholar
  15. 15.
    Glatz RE, Lepp PW, Ward BB, Francis CA (2006) Planktonic microbial community composition across steep physical/chemical gradients in permanently ice-covered Lake Bonney, Antarctica. Geobiology 4:53–67CrossRefGoogle Scholar
  16. 16.
    Green WJ, Gardner TJ, Ferdelman TG, Angle MP, Varner LC, Nixon P (1989) Geochemical process in the Lake Fryxell Basin (Victoria Land, Antarctica). Hydrobiologia 172:129–148CrossRefGoogle Scholar
  17. 17.
    Irgens RL, Gosink JJ, Staley JT (1996) Polaromonas vacuolata gen nov, sp nov, a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Evol Microbiol 46:822–826CrossRefGoogle Scholar
  18. 18.
    Jung DO, Achenbach LA, Karr EA, Takaichi S, Madigan MT (2004) A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182:236–243PubMedCrossRefGoogle Scholar
  19. 19.
    Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA (2005) Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 71:6353–6359PubMedCrossRefGoogle Scholar
  20. 20.
    Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568PubMedCrossRefGoogle Scholar
  21. 21.
    Lyons WB, Fountain A, Doran P, Priscu JC, Neumann K, Welch KA (2000) Importance of landscape position and legacy: the evolution of the lakes in Taylor Valley, Antarctica. Freshw Biol 43:355–367CrossRefGoogle Scholar
  22. 22.
    Madigan MT (1998) Isolation and characterization of psychrophilic purple bacteria from Antarctica. In: Peschek GA, Loffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Plenum, New York, pp 699–706Google Scholar
  23. 23.
    Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277PubMedCrossRefGoogle Scholar
  24. 24.
    Morris RM, Longnecker K, Giovannoni SJ (2006) Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 8:1361–1370PubMedCrossRefGoogle Scholar
  25. 25.
    Nedashkovskaya OI, Suzuki M, Lysenko AM, Snauwaert C, Vancanneyt M, Swings J, Vysotskii MV, Mikhailov VV (2004) Cellullophaga pacifica sp nov. Int J Syst Evol Microbiol 54:609–613PubMedCrossRefGoogle Scholar
  26. 26.
    Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) fastDNAml: A tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48PubMedGoogle Scholar
  27. 27.
    Page KA, Connon SA, Giovannoni SJ (2004) Representative freshwater bacterioplankton isolated from Crater Lake, Oregon. Appl Environ Microbiol 70:6542–6550PubMedCrossRefGoogle Scholar
  28. 28.
    Priscu JC, Downes MT, McKay CP (1996) Extreme super-saturation of nitrous oxide in a permanently ice-covered Antarctic lake. Limnol Oceanogr 41:1544–1551PubMedCrossRefGoogle Scholar
  29. 29.
    Priscu JC (1997) The biogeochemistry of nitrous oxide in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Glob Chang Biol 3:301–305CrossRefGoogle Scholar
  30. 30.
    Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633PubMedCrossRefGoogle Scholar
  31. 31.
    Sassen R, Roberts HH, Carney R, Milkov AV, DeFreitas DA, Lanoil B, Zhang CL (2004) Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chem Geol 205:195–217CrossRefGoogle Scholar
  32. 32.
    Sattley WM, Madigan MT (2006) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antartica. Appl Environ Microbiol 72:5562–5568CrossRefGoogle Scholar
  33. 33.
    Shivaji S, Reddy GSN, Suresh K, Gupta P, Chintalapati S, Schumann P, Stackebrandt E, Matsumoto GI (2005) Psychrobacter vallis sp nov and Psychrobacter aquaticus sp nov, from Antarctica. Int J Syst Evol Microbiol 55:757–762PubMedCrossRefGoogle Scholar
  34. 34.
    Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997PubMedCrossRefGoogle Scholar
  35. 35.
    Spigel RH, Priscu JC (1996) Evolution of temperature and salt structure of Lake Bonney, a chemically stratified Antarctic lake. Hydrobiologia 321(3):177–190CrossRefGoogle Scholar
  36. 36.
    Spigel RH, Priscu JC (1998) Physical limnology of the McMurdo Dry Valley lakes. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica, vol 72. American Geophysical Union, Washington, DC, pp 153–188Google Scholar
  37. 37.
    Takacs CD, Priscu JC (1998) Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: Production and biomass loss over four seasons. Microb Ecol 36:239–250PubMedCrossRefGoogle Scholar
  38. 38.
    Voytek MA, Priscu JC, Ward BB (1999) The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Hydrobiologia 401:113–130CrossRefGoogle Scholar
  39. 39.
    Wharton Jr RA, Lyons WB, Des Marais D (1993) Stable isotope biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake. Chem Geol 107:159–172PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • U. Stingl
    • 1
  • J.-C. Cho
    • 2
  • W. Foo
    • 3
  • K. L. Vergin
    • 1
  • B. Lanoil
    • 3
  • S. J. Giovannoni
    • 1
  1. 1.Department of MicrobiologyOregon State UniversityCorvallisUSA
  2. 2.Division of Biology and Ocean SciencesInha UniversityIncheonRepublic of Korea
  3. 3.Department of Environmental SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations