Microbial Ecology

, Volume 55, Issue 2, pp 212–219

B. thuringiensis is a Poor Colonist of Leaf Surfaces

  • Pau Maduell
  • Gemma Armengol
  • Montserrat Llagostera
  • Sergio Orduz
  • Steven Lindow
Original Article


The ability of several Bacillus thuringiensis strains to colonize plant surfaces was assessed and compared with that of more common epiphytic bacteria. While all B. thuringiensis strains multiplied to some extent after inoculation on bean plants, their maximum epiphytic population sizes of 106 cfu/g of leaf were always much less than that achieved by other resident epiphytic bacteria or an epiphytically fit Pseudomonas fluorescens strain, which attained population sizes of about 107 cfu/g of leaf. However B. thuringiensis strains exhibited much less decline in culturable populations upon imposition of desiccation stress than did other resident bacteria or an inoculated P. fluorescens strain, and most cells were in a spore form soon after inoculation onto plants. B. thuringiensis strains produced commercially for insect control were not less epiphytically fit than strains recently isolated from leaf surfaces. The growth of B. thuringiensis was not affected by the presence of Pseudomonas syringae when co-inoculated, and vice versa. B. thuringiensis strains harboring a green fluorescent protein marker gene did not form large cell aggregates, were not associated with other epiphytic bacteria, and were not found associated with leaf structures, such as stomata, trichomes, or veins when directly observed on bean leaves by epifluorescent microscopy. Thus, B. thuringiensis appears unable to grow extensively on leaves and its common isolation from plants may reflect immigration from more abundant reservoirs elsewhere.


  1. 1.
    Beattie, GA, Lindow, SE (1994a) Comparison of the behavior of epiphytic fitness mutants of Pseudomonas syringae under controlled and field conditions. Appl Environ Microbiol 60(10): 3799–3808PubMedGoogle Scholar
  2. 2.
    Beattie, GA, Lindow, SE (1994b) Survival, growth, and localization of epiphytic fitness mutants of Pseudomonas syringae on leaves. Appl Environ Microbiol 60(10): 3790–3798PubMedGoogle Scholar
  3. 3.
    Brandl, MT, Haxo, AF, Bates, AH, Mandrell, RE (2004) Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants. Appl Environ Microbiol 70(2): 1182–1189PubMedCrossRefGoogle Scholar
  4. 4.
    Brandl, MT, Lindow, SE (1998) Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64(9): 3256–3263PubMedGoogle Scholar
  5. 5.
    Brandl, MT, Mandrell, RE (2002) Fitness of Salmonella enterica serovar Thompson in the cilantro phyllosphere. Appl Environ Microbiol 68(7): 3614–3621PubMedCrossRefGoogle Scholar
  6. 6.
    Collier, FA, Elliot, SL, Ellis, RJ (2005) Spatial variation in Bacillus thuringiensis/cereus populations within the phyllosphere of broad-leaved dock (Rumex obtusifolius) and surrounding habitats. FEMS Microbiol Ecol 54(3):417–425PubMedCrossRefGoogle Scholar
  7. 7.
    Damgaard, PH, Granum, PE, Bresciani, J, Torregrossa, MV, Eilenberg, J, Valentino, L (1997) Characterization of Bacillus thuringiensis isolated from infections in burn wounds. FEMS Immunol Med Microbiol 18(1): 47–53PubMedCrossRefGoogle Scholar
  8. 8.
    Damgaard, PH, Hansen, BM, Pedersen, JC, Eilenberg, J (1997) Natural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops. J Appl Microbiol 82(2): 253–258PubMedGoogle Scholar
  9. 9.
    Dong, YH, Gusti, AR, Zhang, Q, Xu, JL, Zhang, LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68(4): 1754–1759PubMedCrossRefGoogle Scholar
  10. 10.
    Elliot, SL, Sabelis, MW, Janssen, A, van der Geest, LPS, Beerling, EAM, Fransen, J (2000) Can plants use entomopathogens as bodyguards? Ecol Lett 3(3): 228–235CrossRefGoogle Scholar
  11. 11.
    Jara, S, Maduell, P, Orduz, S (2006) Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. J Appl Microbiol 101(1): 117–124PubMedCrossRefGoogle Scholar
  12. 12.
    Kaelin, P, Gadani, F (2000) Occurrence of Bacillus thuringiensis on cured tobacco leaves. Curr Microbiol 40(3): 205–209PubMedCrossRefGoogle Scholar
  13. 13.
    Koch, AL (2001) Oligotrophs versus copiotrophs. Bioessays 23(7): 657–661PubMedCrossRefGoogle Scholar
  14. 14.
    Lee, SJ, Park, SY, Lee, JJ, Yum, DY, Koo, BT, Lee, JK (2002) Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68(8): 3919–3924PubMedCrossRefGoogle Scholar
  15. 15.
    Leveau, JH, Lindow, SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci USA 98(6): 3446–3453PubMedCrossRefGoogle Scholar
  16. 16.
    Lindow, SE, Andersen, GL (1996) Influence of immigration on epiphytic bacterial populations on navel orange leaves. Appl Environ Microbiol 62(8): 2978–2987PubMedGoogle Scholar
  17. 17.
    Maduell, P, Callejas, R, Cabrera, KR, Armengol, G, Orduz, S (2002) Distribution and characterization of Bacillus thuringiensis on the phylloplane of species of Piper (Piperaceae) in three altitudinal levels. Microb Ecol 44(2): 144–153PubMedCrossRefGoogle Scholar
  18. 18.
    Maeda, M, Mizuki, E, Nakamura, Y, Hatano, T, Ohba, M (2000) Recovery of Bacillus thuringiensis from marine sediments of Japan. Curr Microbiol 40(6): 418–422PubMedCrossRefGoogle Scholar
  19. 19.
    Martin, PA, Travers, RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55(10): 2437–2442PubMedGoogle Scholar
  20. 20.
    Mercier, J, Lindow, SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66(1): 369–374PubMedCrossRefGoogle Scholar
  21. 21.
    Mizuki, E, Maeda, M, Tanaka, R, Lee, DW, Hara, M, Akao, T, Yamashita, S, Kim, HS, Ichimatsu, T, Ohba, M (2001) Bacillus thuringiensis: a common member of microflora in activated sludges of a sewage treatment plant. Curr Microbiol 42(6): 422–425PubMedCrossRefGoogle Scholar
  22. 22.
    Monier, JM, Lindow, SE (2004) Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol 70(1): 346–355PubMedCrossRefGoogle Scholar
  23. 23.
    Monier, JM, Lindow, SE (2005) Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb Ecol 49(3): 343–352PubMedCrossRefGoogle Scholar
  24. 24.
    Monier, JM, Lindow, SE (2005) Spatial organization of dual-species bacterial aggregates on leaf surfaces. Appl Environ Microbiol 71(9): 5484–5493PubMedCrossRefGoogle Scholar
  25. 25.
    Nair, JR, Singh, G, Sekar, V (2002) Isolation and characterization of a novel Bacillus strain from coffee phyllosphere showing antifungal activity. J Appl Microbiol 93(5): 772–780PubMedCrossRefGoogle Scholar
  26. 26.
    O’Brien, RD, Lindow, SE (1989) Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79: 619–627CrossRefGoogle Scholar
  27. 27.
    Qazi, SN, Rees, CE, Mellits, KH, Hill, PJ (2001) Development of gfp vectors for expression in Listeria monocytogenes and other low G+C Gram positive bacteria. Microb Ecol 41(4): 301–309PubMedGoogle Scholar
  28. 28.
    Quinones, B, Dulla, G, Lindow, SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18(7): 682–693PubMedCrossRefGoogle Scholar
  29. 29.
    Smith, RA, Couche, GA (1991) The phylloplane as a source of Bacillus thuringiensis variants. Appl Environ Microbiol 57(1): 311–315PubMedGoogle Scholar
  30. 30.
    Uribe, D, Martinez, W, Ceron, J (2003) Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 82(2): 119–127PubMedCrossRefGoogle Scholar
  31. 31.
    Wilson, M, Lindow, SE (1993) Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83: 117–123CrossRefGoogle Scholar
  32. 32.
    Wilson, M, Lindow, SE (1994) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60(12): 4468–4477PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Pau Maduell
    • 1
    • 2
  • Gemma Armengol
    • 1
    • 5
  • Montserrat Llagostera
    • 2
  • Sergio Orduz
    • 1
    • 3
  • Steven Lindow
    • 4
  1. 1.Biotechnology and Biological Control Unit, Corporación para Investigaciones BiológicasMedellínColombia
  2. 2.Microbiology Unit, Department of Genetics and MicrobiologyUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Universidad Nacional de Colombia sede MedellínMedellínColombia
  4. 4.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA
  5. 5.Department of Animal Biology, Vegetal Biology and EcologyUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations