Microbial Ecology

, Volume 55, Issue 4, pp 583–594 | Cite as

Assessment of Microzooplankton Grazing on Heterosigma akashiwo Using a Species- Specific Approach Combining Quantitative Real-Time PCR (QPCR) and Dilution Methods

  • Elif Demir
  • Kathryn J. Coyne
  • Martina A. Doblin
  • Sara M. Handy
  • David A. Hutchins
Original Article

Abstract

Delaware’s Inland Bays (DIB) are subject to numerous mixed blooms of harmful raphidophytes each year, and Heterosigma akashiwo is one of the consistently occurring species. Often, Chattonella subsalsa, C. cf. verruculosa, and Fibrocapsa japonica co-occur with H. akashiwo, indicating a dynamic consortium of raphidophyte species. In this study, microzooplankton grazing pressure was assessed as a top–down control mechanism on H. akashiwo populations in mixed communities. Quantitative real-time polymerase chain reaction (QPCR) with species-specific primers and probes were used in conjunction with the dilution method to assess grazing pressure on H. akashiwo and other raphidophytes. As a comparison, we measured changes in chlorophyll a (chl a) to determine whole community growth and mortality caused by grazing. We detected grazing on H. akashiwo using QPCR in samples where chl a analyses indicated little or no grazing on the total phytoplankton community. Overall, specific microzooplankton grazing pressure on H. akashiwo ranged from 0.88 to 1.88 day−1 at various sites. Experiments conducted on larger sympatric raphidophytes (C. subsalsa, C. cf. verruculosa and F. japonica) demonstrated no significant microzooplankton grazing on these species. Grazing pressure on H. akashiwo may provide a competitive advantage to other raphidophytes such as Chattonella spp. that are too large to be consumed at high rates by microzooplankton and help to shape the dynamics of this harmful algal bloom consortium. Our results show that QPCR can be used in conjunction with the dilution method for evaluation of microzooplankton grazing pressure on specific phytoplankton species within a mixed community.

Notes

Acknowledgments

Authors would like to thank K. Portune and Y. Zhang for laboratory assistance. Financial support was provided by Delaware Sea Grant 235445, EPA STAR ECOHAB R83-1041, EPA ECOHAB R83-3221, NOAA-MERHAB NA04NOS4780240, and the Center for the DIB. We thank D. Kirchman, C. Hare, R. Dale, C. Gobler, and P. Gaffney for their input to the manuscript and also the Delaware Volunteer Phytoplankton Monitoring Group (especially Coordinator Dr. E. Whereat and M. Farestad) for valuable field assistance and field data.

References

  1. 1.
    Amano K, Watanabe M, Kohata K, Harada S (1998) Conditions necessary for Chattonella antiqua red tide outbreaks. Limnol Oceanogr 43(1):117–128CrossRefGoogle Scholar
  2. 2.
    Andersen P, Throndsen J (2003) Estimating cell numbers. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO Publishing pp 99–131Google Scholar
  3. 3.
    Bourdelais A, Tomas C, Naar J, Kubanek J, Baden D (2002) New fish-killing alga in coastal Delaware produces neurotoxins. Environ Health Perspect 110(5):465–470PubMedCrossRefGoogle Scholar
  4. 4.
    Bowers HA, Tengs T, Glasgow HB, Burkholder JM, Rublee PA, Oldach DW (2000) Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl Environ Microbiol 66:4641–4648PubMedCrossRefGoogle Scholar
  5. 5.
    Bowers HA, Tengs T, Glasgow HB Jr, Burkholder JM, Rublee PA, Oldach DW (2002) Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl Environ Microbiol 68(6):3180Google Scholar
  6. 6.
    Bowers HA, Tomas CR, Tengs T, Kempton JW, Lewitus AJ, Oldach DW (2006) Raphidophyceae (Chadefaud ex Silva) systematics and rapid identification: sequence analyses and real-time PCR assays. J Phycol 42(6):1333–1348CrossRefPubMedGoogle Scholar
  7. 7.
    Calbet A, Vaque D, Felipe J, Vila M, Sala MM, Alcaraz M, Estrada M (2003) Relative grazing impact of microzooplankton and mesozooplankton on a bloom of the toxic dinoflagellate Alexandrium minutum. Mar Ecol Prog Ser 259:303–309CrossRefGoogle Scholar
  8. 8.
    Caron DA, Gobler CJ, Lonsdale DJ, Cerrato RM, Schaffner RA, Rose JM, Buck NJ, Taylor G, Boissonneault KR, Mehran R (2004) Microbial herbivory on the brown tide alga, Aureococcus anophagefferens: results from natural ecosystems, mesocosms and laboratory experiments. Harmful Algae 3(4):439–457CrossRefGoogle Scholar
  9. 9.
    Clough J, Strom S (2005) Effects of Heterosigma akashiwo (Raphidophyceae) on protist grazers: laboratory experiments with ciliates and heterotrophic dinoflagellates. Aquat Microb Ecol 39(2):121–134CrossRefGoogle Scholar
  10. 10.
    Coyne KJ, Handy SM, Demir E, Whereat EB, Hutchins DA, Portune KJ, Doblin MA, Cary SC (2005) Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard. Limnol Oceanogr Methods 3:381–391Google Scholar
  11. 11.
    Coyne KJ, Hutchins DA, Hare CE, Cary SC (2001) Assessing temporal and spatial variability in Pfiesteria piscicida distributions using molecular probing techniques. Aquat Microb Ecol 24(3):275–285CrossRefGoogle Scholar
  12. 12.
    Demir E, Hutchins DA, Czymmek K, Coyne KJ (2007) Description of Veridita minima (gen. et sp. nov.) a new raphidophyte from Delaware’s Inland Bays. J Phycol (in press)Google Scholar
  13. 13.
    Dempster EL, Pryor KV, Francis D, Young JE, Rogers HJ (1999) Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques 27(1):66–68PubMedGoogle Scholar
  14. 14.
    Dolan J, McKeon K (2005) The reliability of grazing rate estimates from dilution experiments: have we over estimated rates of organic carbon consumption by microzooplankton? Ocean Sci 1:1–7Google Scholar
  15. 15.
    Doucette G (1995) Interactions between bacteria and harmful algae: a review. Nat Toxins 3:65–74PubMedCrossRefGoogle Scholar
  16. 16.
    Evans C, Archer SD, Jacquet S, Wilson WH (2003) Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquat Microb Ecol 30(3):207–219CrossRefGoogle Scholar
  17. 17.
    Galluzzi L, Penna A, Bertozzini E, Vila M, Garces E, Magnani M (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a dinoflagellate). Appl Environ Microbiol 70(2):1199–1206PubMedCrossRefGoogle Scholar
  18. 18.
    Gaul W, Antia AN (2001) Taxon-specific growth and selective microzooplankton grazing of phytoplankton in the Northeast Atlantic. J Mar Syst 30(3–4):241–261CrossRefGoogle Scholar
  19. 19.
    Gobler CJ, Deonarine S, Leigh-Bell J, Gastrich MD, Anderson OR, Wilhelm SW (2004) Ecology of phytoplankton communities dominated by Aureococcus anophagefferens: the role of viruses, nutrients, and microzooplankton grazing. Harmful Algae 3(4):471–483CrossRefGoogle Scholar
  20. 20.
    Gobler CJ, Renaghan MJ, Buck NJ (2002) Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol Oceanogr 47(1):129–141CrossRefGoogle Scholar
  21. 21.
    Guillard R (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York pp 26–60Google Scholar
  22. 22.
    Hammer A, Gruttner C, Schumann R (2001) New biocompatible tracer particles: use for estimation of microzooplankton grazing, digestion, and growth rates. Aquat Microb Ecol 24:153–161CrossRefGoogle Scholar
  23. 23.
    Handy S, Hutchins D, Cary S, Coyne K (2006) Simultaneous enumeration of multiple raphidophyte species by quantitative real-time PCR: capabilities and limitations. Limnol Oceanogr Methods 4:193–204Google Scholar
  24. 24.
    Handy SM, Coyne KJ, Portune KJ, Demir E, Doblin MA, Hare CE, Cary SC, Hutchins DA (2005) Evaluating vertical migration behavior of harmful raphidophytes in the Delaware Inland Bays utilizing quantitative real-time PCR. Aquat Microb Ecol 40(2):121–132CrossRefGoogle Scholar
  25. 25.
    Hare CE, Demir E, Coyne KJ, Cary SC, Kirchman DL, Hutchins DA (2005) A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates. Harmful Algae 4(2):221–234CrossRefGoogle Scholar
  26. 26.
    Harrison W (1980) Nutrient regeneration and primary production in the sea. In: Falkowski PG (ed) Primary productivity in the sea. Plenum, New York pp 433–460Google Scholar
  27. 27.
    Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6(10):986–994PubMedCrossRefGoogle Scholar
  28. 28.
    Heywood P (1990) Phylum Raphidophyta. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones & Bartlett, Boston pp 318–325Google Scholar
  29. 29.
    Imai I, Ishida Y, Sawayama S, Hata Y (1991) Isolation of a marine gliding bacterium that kills Chattonella antiqua (Raphidophyceae). Nippon Suisan Gakkaishi 57(7):1409–1409Google Scholar
  30. 30.
    Jeong HJ, Ha JH, Park JY, Kim JH, Kang NS, Kim S, Kim JS, Yoo YD, Yih WH (2006) Distribution of the heterotrophic dinoflagellate Pfiesteria piscicida in Korean waters and its feeding on mixotrophic dinoflagellates, raphidophytes, and fish blood cells. Aquat Microb Ecol 44:263–275CrossRefGoogle Scholar
  31. 31.
    Jeong HJ, Kim JS, Kim JH, Kim ST, Seong KA, Kim TH, Song JY, Kim SK (2005) Feeding and grazing impact by the newly described heterotrophic dinoflagellate Stoeckeria algicida on the harmful alga Heterosigma akashiwo. Mar Ecol Prog Ser 295:69–78CrossRefGoogle Scholar
  32. 32.
    Jeong HJ, Kim JS, Yoo YD, Kim ST, Kim TH, Park MG, Lee CH, Seong KA, Kang NS, Shim JH (2003) Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides using mass-cultured grazers. J Eukaryot Microbiol 50:274–282PubMedCrossRefGoogle Scholar
  33. 33.
    Jeong HJ, Yoo YD, Kim JS, Kang NS, Kim TH, Kim JH (2004) Feeding by the marine planktonic ciliate Strombidinopsis jeokjo on common heterotrophic dinoflagellates. Aquat Microb Ecol 36(2):181–187CrossRefGoogle Scholar
  34. 34.
    Jeong HJ, Yoo YD, Kim JS, Kim TH, Kim JH, Kang NS, Yih WH (2004) Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): prey species, the effects of prey concentration and grazing impact. J Eukaryot Microbiol 51:563–569PubMedCrossRefGoogle Scholar
  35. 35.
    Jeong HJ, Yoo YD, Park JY, Song JY, Kim ST, Lee SH, Kim KY, Yih WH (2005) Feeding by the phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat Microb Ecol 40:133–155CrossRefGoogle Scholar
  36. 36.
    Jeong HJ, Yoo YD, Seong KA, Kim JH, Park JY, Kim SH, Lee SH, Ha JH, Yih WH (2005) Feeding by the mixotrophic dinoflagellate Gonyaulax polygramma: mechanisms, prey species, the effects of prey concentration, and grazing impact. Aquat Microb Ecol 38:249–257CrossRefGoogle Scholar
  37. 37.
    Jeong HJ, Yoon JY, Kim JS, Yoo YD, Seong KA (2002) Growth and grazing rates of the prostomatid ciliate Tiarina fusus on red-tide and toxic algae. Aquat Microb Ecol 28(3):289–297CrossRefGoogle Scholar
  38. 38.
    Kim JS, Jeong HJ (2004) Feeding by the heterotrophic dinoflagellates Gyrodinium dominans and G. spirale on the red-tide dinoflagellate Prorocentrum minimum. Mar Ecol Prog Ser 280:85–94CrossRefGoogle Scholar
  39. 39.
    Landry M, Calbet A (2005) Reality checks on microbial food web interactions in dilution experiments: responses to the comments of Dolan and McKeon. Ocean Science 1:39–44Google Scholar
  40. 40.
    Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67(3):283–288CrossRefGoogle Scholar
  41. 41.
    Landry MR, Kirshtein J, Constantinou J (1995) A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial pacific. Mar Ecol Prog Ser 120(1–3):53–63CrossRefGoogle Scholar
  42. 42.
    Lawrence JE, Chan AM, Suttle CA (2002) Viruses causing lysis of the toxic bloom-forming alga Heterosigma akashiwo (Raphidophyceae) are widespread in coastal sediments of British Columbia, Canada. Limnol Oceanogr 47(2):545–550CrossRefGoogle Scholar
  43. 43.
    Lehrter JC, Pennock JR, McManus GB (1999) Microzooplankton grazing and nitrogen excretion across a surface estuarine–coastal interface. Estuaries 22(1):113–125CrossRefGoogle Scholar
  44. 44.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \({\left( {2^{{ - \Delta \Delta C}} } \right)}\) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  45. 45.
    McManus GB, Fuhrman JA (1988) Clearance of bacteria-sized particles by natural-populations of nanoplankton in the Chesapeake Bay outflow plume. Mar Ecol Prog Ser 42(2):199–206CrossRefGoogle Scholar
  46. 46.
    Menden-Deuer S, Lessard EJ, Satterberg J, Grunbaum D (2005) Growth rates and starvation survival of three species of the pallium-feeding, thecate dinoflagellate genus Protoperidinium. Aquat Microb Ecol 41(2):145–152CrossRefGoogle Scholar
  47. 47.
    Moorthi S, Countway P, Stauffer B, Caron D (2006) Use of quantitative real-time PCR to investigate the dynamics of the red tide dinoflagellate Lingulodinium polyedrum. Microb Ecol 52(1):136–150PubMedCrossRefGoogle Scholar
  48. 48.
    Murrell MC, Stanley RS, Lores EM, DiDonato GT, Flemer DA (2002) Linkage between microzooplankton grazing and phytoplankton growth in a Gulf of Mexico estuary. Estuaries 25(1):19–29CrossRefGoogle Scholar
  49. 49.
    Nagasaki K, Ando M, Imai I, Itakura S, Ando M, Ishida Y (1993) Viral infection in Heterosigma akashiwo (Raphidophyceae); a possible termination mechanism of the noxious red tide. In: Harmful marine algal blooms, Proceedings of the Sixth International Conference on Toxic Marine Phytoplankton: Intercept Ltd., London, UKGoogle Scholar
  50. 50.
    Nakamura Y (1998) Growth and grazing of a large heterotrophic dinoflagellate, Noctiluca scintillans, in laboratory cultures. J Plankton Res 20(9):1711–1720CrossRefGoogle Scholar
  51. 51.
    Pedersen MF, Hansen PJ (2003) Effects of high pH on the growth and survival of six marine heterotrophic protists. Mar Ecol Prog Ser 260:33–41CrossRefGoogle Scholar
  52. 52.
    Popels L, Cary S, Hutchins D, Forbes R, Pustizzi F, Gobler C, Coyne K (2003) The use of quantitative polymerase chain reaction for the detection and enumeration of the harmful alga Aureococcus anophagefferens in environmental samples along the United States East Coast. Limnol Oceanogr Methods 1:92–102Google Scholar
  53. 53.
    Portune K, Coyne K, Hutchins D, Handy S, Cary S (2007) Germination of Heterosigma akashiwo and Chattonella subsalsa (Raphidophyceae) cysts in Delaware’s Inland Bays, DE. Aquat Microb Ecol (in press)Google Scholar
  54. 54.
    Price KS (1998) A framework for a Delaware inland bays environmental classification. Environ Monit Assess 51(1–2):285–298CrossRefGoogle Scholar
  55. 55.
    Rosetta CH, McManus GB (2003) Feeding by ciliates on two harmful algal bloom species, Prymnesium parvum and Prorocentrum minimum. Harmful Algae 2(2):109–126Google Scholar
  56. 56.
    Rozan TF, Taillefert M, Trouwborst RE, Glazer BT, Ma SF, Herszage J, Valdes LM, Price KS, Luther GW (2002) Iron–sulfur–phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnol Oceanogr 47(5):1346–1354CrossRefGoogle Scholar
  57. 57.
    Seong KA, Jeong HJ, Kim S, Kim GH, Kang JH (2006) Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates on marine bacteria. Mar Ecol Prog Ser 322:85–97CrossRefGoogle Scholar
  58. 58.
    Setala O, Autio R, Kuosa H (2005) Predator–prey interactions between a planktonic ciliate Strombidium sp. (Ciliophora, Oligotrichida) and the dinoflagellate Pfiesteria piscicida (Dinamoebiales, Pyrrophyta). Harmful Algae 4(2):235–247CrossRefGoogle Scholar
  59. 59.
    Sherr BF, Sherr EB, Newell SY (1984) Abundance and productivity of heterotrophic nanoplankton in Georgia coastal waters. J Plankton Res 6(1):195–202CrossRefGoogle Scholar
  60. 60.
    Sieracki ME, Gobler CJ, Cucci TL, Thier EC, Gilg IC, Keller MD (2004) Pico- and nanoplankton dynamics during bloom initiation of Aureococcus in a Long Island, NY bay. Harmful Algae 3(4):459–470CrossRefGoogle Scholar
  61. 61.
    Stoecker DK, Parrow MW, Burkholder JM, Glasgow HB (2002) Grazing by microzooplankton on Pfiesteria piscicida cultures with different histories of toxicity. Aquat Microb Ecol 28(1):79–85CrossRefGoogle Scholar
  62. 62.
    Stoecker DK, Stevens K, Gustafson DE (2000) Grazing on Pfiesteria piscicida by microzooplankton. Aquat Microb Ecol 22(3):261–270CrossRefGoogle Scholar
  63. 63.
    Strom SL, Welschmeyer NA (1991) Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open sub-arctic Pacific-Ocean. Limnol Oceanogr 36(1):50–63CrossRefGoogle Scholar
  64. 64.
    Tai V, Lawrence JE, Lang AS, Chan AM, Culley AI, Suttle CA (2003) Characterization of HaRNAV, a single-stranded RNA virus causing lysis of Heterosigma akashiwo (Raphidophyceae). J Psychol 39(2):343–352Google Scholar
  65. 65.
    Throndsen J (1997) The planktonic marine flagellates. In: Tomas CR (ed) Identifying marine phytoplankton. Academic, San Diego pp 591–730Google Scholar
  66. 66.
    Tillmann U, Reckermann M (2002) Dinoflagellate grazing on the raphidophyte Fibrocapsa japonica. Aquat Microb Ecol 26(3):247–257CrossRefGoogle Scholar
  67. 67.
    Tomas C, Deason E (1981) The influence of grazing by two Acartia species on Olisthodiscus luteus Carter. PSZNI: Mar Ecol 2:215–223Google Scholar
  68. 68.
    Uchida T, Kamiyama T, Matsuyama Y (1997) Predation by a photosynthetic dinoflagellate Gyrodinium instriatum on loricated ciliates. J Plankton Res 19(5):603–608CrossRefGoogle Scholar
  69. 69.
    Uye S (1986) Impact of copepod grazing on the red-tide flagellate Chattonella antiqua. Mar Bio 92(1):35–43CrossRefGoogle Scholar
  70. 70.
    Vadstein O, Stibor H, Lippert B, Loseth K, Roederer W, Sundt-Hansen L, Olsen Y (2004) Moderate increase in the biomass of omnivorous copepods may ease grazing control of planktonic algae. Mar Ecol Prog Ser 270:199–207CrossRefGoogle Scholar
  71. 71.
    Waterhouse TY, Welschmeyer NA (1995) Taxon-specific analysis of microzooplankton grazing rates and phytoplankton growth-rates. Limnol Oceanogr 40(4):827–834CrossRefGoogle Scholar
  72. 72.
    Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39(8):1985–1992CrossRefGoogle Scholar
  73. 73.
    Whereat E (2005) Phytoplankton monitoring report. Volunteer Phytoplankton Monitoring Group, Delaware Inland Bays Citizen Monitor Program. University of Delaware, Sea Grant Marine Advisory Service Lewes, DEGoogle Scholar
  74. 74.
    Zhang Y, Fu FX, Whereat E, Coyne KJ, Hutchins DA (2006) Bottom–up controls on a mixed-species HAB assemblage: a comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) from the Delaware Inland Bays, USA. Harmful Algae 5(3):310–320CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Elif Demir
    • 1
  • Kathryn J. Coyne
    • 1
  • Martina A. Doblin
    • 2
  • Sara M. Handy
    • 1
  • David A. Hutchins
    • 1
    • 3
  1. 1.College of Marine and Earth StudiesUniversity of DelawareLewesUSA
  2. 2.Institute of Water and Environmental Resource Management/Department of Environmental ScienceUniversity of Technology, SydneySydneyAustralia
  3. 3.Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations