Microbial Ecology

, Volume 55, Issue 1, pp 130–140 | Cite as

Ecological Occurrence of Gluconacetobacter diazotrophicus and Nitrogen-fixing Acetobacteraceae Members: Their Possible Role in Plant Growth Promotion

  • V.S. Saravanan
  • M. Madhaiyan
  • Jabez Osborne
  • M. Thangaraju
  • T.M. Sa
Article

Abstract

Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N2-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N2 fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.

References

  1. 1.
    Adriano-Anaya, M, Salvador-Figueroa, M, Ocampo, JA, García-Romera, I (2005) Plant cell-wall degrading hydrolytic enzymes of Gluconacetobacter diazotrophicus. Symbiosis 40: 151–156Google Scholar
  2. 2.
    Adriano-Anaya, ML, Salvador-Figueroa, M, Ocampo, JA, García-Romera, I (2006) Hydrolytic enzyme activities in maize (Zea mays) and sorghum (Sorghum bicolor) roots inoculated with Gluconacetobacter diazotrophicus and Glomus intraradices. Soil Biol Biochem 38: 879–886Google Scholar
  3. 3.
    Alvarez, B, Martinez-Drets, G (1995) Metabolic characterization of Acetobacter diazotrophicus. Can J Microbiol 41: 918–924CrossRefGoogle Scholar
  4. 4.
    Ando, S, Goto, M, Meunchang, S, Thongra-ar, P, Fujiwara, T, Hayashi, H, Yoneyama, T (2005) Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.). Soil Sci Plant Nutr 51: 303–308Google Scholar
  5. 5.
    Ashbolt, NJ, Inkerman, PA (1990) Acetic acid bacterial biota of the pink sugarcane mealybug, Saccharococcus sacchari, and its environs. Appl Environ Microbiol 56: 707–712PubMedGoogle Scholar
  6. 6.
    Asis, CA, Jr, Kubota, M, Chebotar, VK, Ohta, H, Arima, Y, Nishiyama, K, Tsuchiya, K, Akao, S (2000) Endophytic bacterial population in Philippine sugarcane cultivars and isolation of nitrogen-fixing strains. Microbes Environ 15: 209–216Google Scholar
  7. 7.
    Asis, CA, Jr, Kubota, M, Ohta, H, Arima, Y, Chebotar, VK, Tsuchiya, K, Akao, S (2000) Isolation and partial characterization of endophytic diazotrophs associated with Japanese sugarcane cultivar. Soil Sci Plant Nutr 46: 759–765Google Scholar
  8. 8.
    Baldani, JI, Caruso, L, Baldani, VLD, Goi, SR, Döbereiner, J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29: 911–922Google Scholar
  9. 9.
    Baldani, JI, Reis, VM, Baldani, VLD, Döbereiner, J (2002) A brief story of nitrogen fixation in sugarcane-reasons for success in Brazil. Funct Plant Biol 29: 417–423Google Scholar
  10. 10.
    Baldani, JI, Baldani, VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Ciênc 77: 549–579PubMedGoogle Scholar
  11. 11.
    Bansal, RK, Dahiya, RS, Narula, N, Jain, RK (2005) Management of Meloidogyne incognita in cotton using strains of the bacterium Gluconacetobacter diazotrophicus. Nematol Mediter 33: 101–105Google Scholar
  12. 12.
    Bastián, F, Cohen, A, Piccoli, P, Luna, V, Baraldi, R, Bottini, R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined culture media. Plant Growth Regul 24: 7–11Google Scholar
  13. 13.
    Blanco, Y, Blanch, M, Piñón, D, Legaz, ME, Vicente, C (2005) Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. J Biosci Bioeng 99: 366–371PubMedGoogle Scholar
  14. 14.
    Boddey, RM, Urquiaga, S, Reis, VM, Döbereiner, J (1991) Biological nitrogen fixation associated with sugarcane. Plant Soil 37: 111–117Google Scholar
  15. 15.
    Boddey, RM, de Oliveira, OC, Urquiaga, S, Reis, VM, de Olivares, FL, Baldani, VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugarcane and rice: Contributions and prospects for improvement. Plant Soil 174: 195–209Google Scholar
  16. 16.
    Boddey, RM, Urquiaga, S, Alves, BJR, Reis, VM (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252: 139–149Google Scholar
  17. 17.
    Caballero-Mellado, J, Fuentes-Ramírez, LE, Reis, VM, Martínez-Romero, E (1995). Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl Environ Microbiol 61: 3008–3013PubMedGoogle Scholar
  18. 18.
    Carrizo de Bellone, S, Bellone, CH (2006) Presence of endophytic diazotrophs in sugarcane juice. World J Microbiol Biotechnol 22: 1065–1068Google Scholar
  19. 19.
    Cavalcante, VA, Döbereiner, J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108: 23–31Google Scholar
  20. 20.
    Cavalcante, JJV, Vargas, C, Nogueira, EM, Vinagre, F, Schwarcz, K, Baldani, JI, Ferreira PCG, Hemerly, AS (2007) Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J Exp Bot 58: 673–686PubMedGoogle Scholar
  21. 21.
    Cocking, EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252: 169–175Google Scholar
  22. 22.
    Cocking, EC, Stone, PJ, Davey, MR (2006) Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus. In Vitro Cell Dev Biol-Plant 42: 74–82Google Scholar
  23. 23.
    Debarry, M, Marten, I, Ngezahayo, A, Kolb, HA (2005) Differential defense responses in sweet potato suspension culture. Plant Sci 168: 1171–1179Google Scholar
  24. 24.
    Dobbelaere, S, Vanderleyden, J, Okon, Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22: 107–149Google Scholar
  25. 25.
    Döbereiner, J, Reis, VM, Lazarini, AC (1988) New N2 fixing bacteria in association with cereals and sugarcane. In: Bothe, H, de Bruijn, FJ, Newton, WE (Eds.) Nitrogen Fixation: Hundred Years After. Gustav Fisher, Stuttgart, pp 717–722Google Scholar
  26. 26.
    Döbereiner, J, Pimentel, P, Olivares, FL, Urquiaga, S (1990) Batéria diazotrofica podem J ser endófitas e ou fitopatogénicas. An Acad Bras Ciênc 62: 319Google Scholar
  27. 27.
    Döbereiner, J, Reis, VM, Paula, MA, Olivares, FL (1993) Endophytic diazotrophs in sugarcane, cereals and tuber plants. In: Palacios, R, Mora, J, Newton, WE (Eds.) New Horizons in Nitrogen Fixation. Kluwer, Dordrecht, pp 671–676Google Scholar
  28. 28.
    Dong, Z, Canny, MJ, McCully, ME, Roboredo, MR, Cabadilla, CF, Ortega, E, Rodes, R (1994) A nitrogen fixing endophyte of sugarcane stems. (A new role for the apoplast). Plant Physiol 105: 1139–1147PubMedGoogle Scholar
  29. 29.
    Dong, Z, Heydrich, M, Bernard, K, McCully, ME (1995) Further evidence that the N2 fixing endophytic bacterium from the intercellular spaces of sugarcane stems is Acetobacter diazotrophicus. Appl Environ Microbiol 61: 1843–1846PubMedGoogle Scholar
  30. 30.
    Dong, Z, McCully, ME, Canny, MJ (1997) Does Acetobacter diazotrophicus live and move in the xylem of sugarcane stems? Anatomical and physiological data. Ann Bot 80: 147–158Google Scholar
  31. 31.
    Dong, Z, Zelmer, CD, Canny, MJ, McCully, ME, Luit, B, Pan, B, Faustino, RS, Pierce, GN, Vessey, JK (2002) Evidence for protection of nitrogenase from O2 by colony structure in the aerobic diazotroph Gluconacetobacter diazotrophicus. Microbiology-(UK) 148: 2293–2298Google Scholar
  32. 32.
    Dutta, D, Gachhui, R (2006) Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Sys Evol Microbiol 56: 1899–1903Google Scholar
  33. 33.
    Dutta, D, Gachhui, R (2007) Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov. isolated from Kombucha tea. Int J Syst Evol Microbiol 57: 353–357PubMedGoogle Scholar
  34. 34.
    Emtiazi, G, Etemadifar, Z, Tavassoli, M (2003) A novel nitrogen-fixing cellulytic bacterium associated with root of corn is a candidate for production of single cell protein. Biomass Bioenergy 25: 423–426Google Scholar
  35. 35.
    Fisher, K, Newton, WE (2005) Nitrogenase proteins from Gluconacetobacter diazotrophicus, a sugarcane-colonizing bacterium. BBA-Proteins Proteomics 1750: 154–165Google Scholar
  36. 36.
    Flores-Encarnación, M, Contreras-Zentella, M, Soto-Urzua, L, Aguilar, GR, Baca, BE, Escamilla, JE (1999) The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5. Appl Environ Microbiol 181: 6987–6995Google Scholar
  37. 37.
    Franke, IH, Fegan, M, Hayward, C, Leonard, G, Stackebrandt, E, Sly, LI (1999) Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugarcane and from the pink sugarcane mealybug. Int J Syst Bacteriol 49: 1681–1693PubMedCrossRefGoogle Scholar
  38. 38.
    Franke-Whittle, IH, O’Shea, MG, Leonard, GJ, Webb, R, Sly, LI (2005) Investigation into the ability of Gluconacetobacter sacchari to live as an endophyte in sugarcane. Plant Soil 271: 285–295Google Scholar
  39. 39.
    Franke-Whittle, IH, O’Shea, MG, Leonard, GJ, Sly, LI (2005) Design, development, and use of molecular primers and probes for the detection of Gluconacetobacter species in the pink sugarcane mealybug. Microb Ecol 50: 128–139PubMedGoogle Scholar
  40. 40.
    Fuentes, R, Tapia, H, Jiménez, S, Mascarúa, E, Santoyo, P, Caso, V, Romero, H, Cajica, E, León, B, Rosales, P, Füguemann, M, Castillo, R (2003) Bacterias acéticas: Diversidad e interacción con las plantas. Elementos: ciencia y cultura 10: 47–51Google Scholar
  41. 41.
    Fuentes-Ramírez, LE, Jiménez-Salgado, T, Abarca-Ocampo, IR, Caballero-Mellado, J (1993) Acetobacter diazotrophicus, an indole acetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154: 145–150Google Scholar
  42. 42.
    Fuentes-Ramírez, LE, Caballero-Mellado, J, Sepúlveda, J, Martínez-Romero, E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29: 117–129Google Scholar
  43. 43.
    Fuentes-Ramírez, LE, Bustillos-Cristales, R, Tapia-Hernández, A, Jiménez-Salgado, T, Wang, ET, Martínez-Romero, E, Caballero-Mellado, J (2001) Novel nitrogen-fixing acetic acid bacteria Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51: 1305–1314PubMedGoogle Scholar
  44. 44.
    Gillis, M, Kersters, K, Hoste, B, Janssens, D, Kroppenstedt, RM, Stephan, MP, Teixeira, KRS, Döbereiner, J, De Ley, J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39: 361–364Google Scholar
  45. 45.
    González, B, Martínez, S, Chávez, JL, Lee, S, Castro, NA, Domínguez, MA, Gómez, S, Contreras, ML, Kennedy, C, Escamilla, JE (2006) Respiratory system of Gluconacetobacter diazotrophicus PAL5 evidence for a cyanide-sensitive cytochrome bb and cyanide-resistant cytochrome ba quinol oxidases. Biochim Biophys Acta Bioenerg 1757: 1614–1622Google Scholar
  46. 46.
    Govindarajan, M, Balandreau, J, Muthukumarasamy, R, Revathi, G, Lakshminarasimhan, C (2006). Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280: 239–252Google Scholar
  47. 47.
    Greenberg, DE, Porcella, SF, Stock, F, Wong, A, Conville, PS, Murray, PR, Holland, SM, Zelazny, AM (2006) Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. Int J Syst Evol Microbiol 56: 2609–2616PubMedGoogle Scholar
  48. 48.
    Hoefsloot, G, Termorshuizen, AJ, Watt, DA, Cramer, MD (2005) Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugarcane cultivar. Plant Soil 277: 85–96Google Scholar
  49. 49.
    James, EK, Reis, VM, Olivares, FL, Baldani, JI, Döbereiner, J (1994) Infection of sugarcane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45: 757–766Google Scholar
  50. 50.
    James, EK, Olivares, FL (1998) Infection and colonization of sugarcane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17: 77–119Google Scholar
  51. 51.
    James, EK, Olivares, FL, de Oliveira, ALM, dos Reis, Jr, FB, da Silva, LG, Reis, VM (2001) Further observations on the interaction between sugarcane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52: 747–760PubMedGoogle Scholar
  52. 52.
    Jiménez-Salgado, T, Fuentes-Ramírez, LE, Tapia-Hernández, A, Mascarua, MA, Martínez-Romero, E, Caballero-Mellado, J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen fixing acetobacteria. Appl Environ Microbiol 63: 3676–3683PubMedGoogle Scholar
  53. 53.
    Kersters, K, Lisdiyanti, P, Komagata, K, Swings, J (2006) The Family Acetobacteraceae: The genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Dworkin, M, Falkow, S, Rosenberg, E, Schleifer, KH, Stackebrandt, E (Eds.) The Prokaryotes (3rd Edn.): A Handbook on the Biology of Bacteria: Proteobacteria: Alpha and Beta sub classes Vol 5, Springer, New York, pp 163–200Google Scholar
  54. 54.
    Kuklinsky-Sobral, J, Araújo, WL, Mendes, R, Geraldi, IO, Pizzirani-Kleiner, AA, Azevedo, JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 12: 1244–1251Google Scholar
  55. 55.
    Lee, S, Sevilla, M, Reth, A, Meletzus, D, Gunapala, N, Kennedy, C (2000) Characterization of nitrogen fixation genes and plant-growth promoting properties in Acetobacter diazotrophicus, an endophyte of sugarcane. In: Stacey, G, Keen, NT (Eds.) Plant-Microbe Interactions, APS Press, St. Paul, pp 297–314Google Scholar
  56. 56.
    Lee, S, Reth, A, Meletzus, D, Sevilla, M, Kennedy, C (2000) Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus. J Bacteriol 182: 7088–7091PubMedGoogle Scholar
  57. 57.
    Lee, S, Flores-Encarnación, M, Contreras-Zentella, M, Garcia-Flores, L, Escamilla, JE, Kennedy, C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186: 5384–5391PubMedGoogle Scholar
  58. 58.
    Li, RP, Macrae, IC (1991) Specific association of diazotrophic acetobacters with sugarcane. Soil Biol Biochem 23: 999–1002Google Scholar
  59. 59.
    Loganathan, P, Sunitha, R, Parida, AK, Nair, S (1999) Isolation and characterization of two genetically distant groups of Acetobacter diazotrophicus from a new host plant Eleusine coracana L. J Appl Microbiol 87: 167–172Google Scholar
  60. 60.
    Loganathan, P, Nair, S (2003) Crop-specific endophytic colonization by a novel, salt-tolerant, N2 fixing and phosphate-solubilizing Gluconacetobacter sp. from wild rice. Biotechnol Lett 25: 497–501PubMedGoogle Scholar
  61. 61.
    Loganathan, P, Nair, S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt tolerant, nitrogen fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54: 1185–1190PubMedGoogle Scholar
  62. 62.
    Luna, MF, Mignone, CF, Boiardi, JL (2000) The carbon source influences the energetic efficiency of the respiratory chain of N2-fixing Acetobacter diazotrophicus. Appl Microbiol Biotechnol 54: 564–569PubMedGoogle Scholar
  63. 63.
    Luna, MF, Bernardelli, CE, Mignone, CF, Boiardi, JL (2002) Energy generation by extracellular aldose oxidation in N2 fixing Gluconacetobacter diazotrophicus. Appl Environ Microbiol 68: 2054–2056PubMedGoogle Scholar
  64. 64.
    Luna, MF, Bernardelli, CE, Galar, ML, Boiardi, JL (2006) Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3. Curr Microbiol 52: 163–168PubMedGoogle Scholar
  65. 65.
    Madhaiyan, M, Saravanan, VS, Bhakiya Silba Sandal Jovi, D, Lee, H, Thenmozhi, R, Hari, K, Sa, TM (2004) Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res 159: 233–243PubMedGoogle Scholar
  66. 66.
    Madhaiyan, M, Poonguzhali, S, Hari, K, Saravanan, VS, Sa, TM (2006) Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pest Biochem Physiol 84: 143–154Google Scholar
  67. 67.
    Maheshkumar, KS, Krishnaraj, PU, Alagawadi, AR (1999) Mineral phosphates solubilizing activity of Acetobacter diazotrophicus: a bacterium associated with sugarcane. Curr Sci 76: 874–875Google Scholar
  68. 68.
    Marchal, K, Vanderleyden, J (2000) The “oxygen paradox” of dinitrogen-fixing bacteria. Biol Fertil Soils 30: 363–373Google Scholar
  69. 69.
    Matiru, V, Thomson, J (1998) Can Acetobacter diazotrophicus be used as a growth promoter for coffee, tea and banana plants? In: Dakora, FD (Ed.) Proceedings of the 8th Congress of the African Association for Biological Nitrogen Fixation. University of Cape Town, South Africa, pp 129–130Google Scholar
  70. 70.
    Medeiros, AFA, Polidoro, JC, Reis, VM (2006) Nitrogen source effect on Gluconacetobacter diazotrophicus colonization of sugarcane (Saccharum spp.). Plant Soil 279: 141–152Google Scholar
  71. 71.
    Mehnaz, S, Lazarovits, G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51: 326–335PubMedGoogle Scholar
  72. 72.
    Mehnaz, S, Weselowski, B, Lazarovits, G (2006) Isolation and identification of Gluconacetobacter azotocaptans from corn rhizosphere. Syst Appl Microbiol 29: 496–501PubMedGoogle Scholar
  73. 73.
    Meletzus, D, Teixeira, K, Perlova, O, Nawroth, R, Zellermann, E, Morgan, T, Baldani, IV, Kennedy, C (1998) Characterization of genes involved in regulation of nitrogen fixation and ammonium sensing in Acetobacter diazotrophicus, an endophyte of sugarcane. In: Elmerich, C, Kondorosi, A, Newton, WE (Eds.) Biological Nitrogen Fixation for the 21st Century. Kluwer, Dordrecht, pp 125–126Google Scholar
  74. 74.
    Moutia, JFY, Umrit, G, Saumtally, AS, Ng Kee Kwong, KF (2003) The role of diazotrophic bacteria in the nitrogen nutrition of sugarcane in Mauritius: preliminary results. AMAS Food and Agricultural Research Council, Réduit, pp 29–39Google Scholar
  75. 75.
    Muñoz-Rojas, J, Caballero-Mellado, J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46: 454–564PubMedGoogle Scholar
  76. 76.
    Muñoz-Rojas, J, Fuentes-Ramírez, LE, Caballero-Mellado, J (2005) Antagonism among Gluconacetobacter diazotrophicus strains in culture media and in endophytic association. FEMS Microbiol Ecol 54: 57–66PubMedGoogle Scholar
  77. 77.
    Muthukumarasamy, R, Revathi, G, Lakshminarasimhan, C (1999) Influence of N fertilization on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biol Fertil Soils 29: 157–164Google Scholar
  78. 78.
    Muthukumarasamy, R, Revathi, G (1999) Diazotrophic associations in sugarcane cultivation in South India. Trop Agric (Trinidad) 76: 171–178Google Scholar
  79. 79.
    Muthukumarasamy, R, Revathi, G, Vadivelu, M (2000) Antagonistic potential of N2 fixing Acetobacter diazotrophicus against Colletotrichum falcatum Went, a causal organism of red-rot of sugarcane. Curr Sci 78: 1063–1065Google Scholar
  80. 80.
    Muthukumarasamy, R, Revathi, G, Loganathan, P (2002) Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus). Plant Soil 243: 91–102Google Scholar
  81. 81.
    Muthukumarasamy, R, Cleenwerck, I, Revathi, G, Vadivelu, M, Janssens, D, Hoste, B, Gum, KU, Park, KD, Son, CY, Sa, TM, Caballero-Mellado, J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28: 277–286PubMedGoogle Scholar
  82. 82.
    Muthukumarasamy, R, Govindarajan, M, Vadivelu, M, Revathi, G (2006) N-fertilizer saving by the inoculation of Gluconacetobacter diazotrophicus and Herbaspirillum sp. in micropropagated sugarcane plants. Microbiol Res 161: 238–245PubMedGoogle Scholar
  83. 83.
    Muthukumarasamy, R, Kang, UG, Park, KD, Jeon, WT, Park, CY, Cho, YS, Kwon, SW, Song, J, Roh, DH, Revathi, G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. J Appl Microbiol 102: 981–991PubMedGoogle Scholar
  84. 84.
    Nogueira, EM, Vinagre, F, Masuda, HP, Vargas, C, Pádua,VLMD, Silva, FRD, Santos, RVD, Baldani, JI, Ferreira, PCG, Hemerly, AS (2001) Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet Mol Biol 24: 199–206Google Scholar
  85. 85.
    Oliveira, ALM, Urquiaga, S, Döbereiner, J, Baldani, JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242: 205–215Google Scholar
  86. 86.
    Oliveira, ALM, Canuto, EL, Silva, EE, Reis, VM, Baldani, JI (2004) Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Braz J Microbiol 35: 295–299Google Scholar
  87. 87.
    Oliveira, ALM, Canuto, EDL, Urquiaga, S, Reis, VM, Baldani, JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284: 23–32Google Scholar
  88. 88.
    Paula, MA, Reis, VM, Döbereiner, J (1991) Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomea batatus), sugarcane (Saccharum sp.) and sweet sorghum (Sorghum bicolor). Biol Fertil Soils 11: 111–115Google Scholar
  89. 89.
    Perlova, O, Nawroth, R, Zellermann, EM, Meletzus, D (2002) Isolation and characterization of the glnD gene of Gluconacetobacter diazotrophicus, encoding a putative uridylyltransferase/uridylyl-removing enzyme. Gene 297: 159–168PubMedGoogle Scholar
  90. 90.
    Perlova, O, Ureta, A, Nordlund, S, Meletzus, D (2003) Identification of three genes encoding PII-like proteins in Gluconacetobacter diazotrophicus: studies of their role(s) in the control of nitrogen fixation. J Bacteriol 185: 5854–5861PubMedGoogle Scholar
  91. 91.
    Piñón, D, Casas, M, Blanch, M, Fontaniella, B, Blanco, Y, Vicente, C, Solas, MT, Legaz, ME (2002) Gluconacetobacter diazotrophicus, a sugarcane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugarcane pathogen. Res Microbiol 153: 345–351PubMedGoogle Scholar
  92. 92.
    Reis Junior, FB, Reis, VM, Urquiaga, S, Döbereiner, J (2000) Influence of nitrogen fertilization on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugarcane (Saccharum spp.). Plant Soil 219: 153–159Google Scholar
  93. 93.
    Saravanan, VS (2004) An investigation on solubilization of zinc and certain other insoluble compounds by Gluconacetobacter diazotrophicus. Ph.D. thesis, Tamil Nadu Agricultural University, Coimbatore, p 130Google Scholar
  94. 94.
    Saravanan, VS, Madhaiyan, M, Thangaraju, M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66: 1794–1798PubMedGoogle Scholar
  95. 95.
    Saravanan, VS, Kalaiarasan, P, Madhaiyan, M, Thangaraju, M (2007) Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Lett Appl Microbiol 44: 235–241PubMedGoogle Scholar
  96. 96.
    Sevilla, M, Meletzus, D, Teixeira, K, Lee, S, Nutakki, A, Baldani, I, Kennedy, C (1997) Analysis of nif and regulatory genes in Acetobacter diazotrophicus. Soil Biol Biochem 29: 871–874Google Scholar
  97. 97.
    Sevilla, M, Burris, RH, Gunapala, N, Kennedy, C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant-Microbe Interact 14: 358–366PubMedGoogle Scholar
  98. 98.
    Stephan, MP, Oliveira, M, Teixeira, KRS, Martínez-Drets, G, Döbereiner, J (1991) Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol Lett 77: 67–72Google Scholar
  99. 99.
    Suman, A, Shasany, AK, Singh, M, Shahi, HN, Gaur, A, Khanuja, SPS (2001) Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane. World J Microbiol Biotechnol 17: 39–45Google Scholar
  100. 100.
    Suman, A, Gaur, A, Shrivastava, AK, Yadav, RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47: 155–162Google Scholar
  101. 101.
    Snyder, RW, Ruhe, J, Kobrin, S, Wasserstein, A, Doline, C, Nachamkin, I, Lipschutz, JH (2004) Asaia bogorensis peritonitis identified by 16S ribosomal RNA sequence analysis in a patient receiving peritoneal dialysis. Am J Kidney Dis 44: e15–e17PubMedGoogle Scholar
  102. 102.
    Tapia-Hernández, A, Bustillos-Cristales, MR, Jiménez-Salgado, T, Caballero-Mellado, J, Fuentes-Ramírez, LE (2000) Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microb Ecol 39: 49–55PubMedGoogle Scholar
  103. 103.
    Teixeira, KRS, Wulling, M, Morgan, T, Galler, R, Zellermann, EM, Baldani, JI, Kennedy, C, Meletzus, D (1999) Molecular analysis of the chromosomal region encoding the nifA and nifB genes of Acetobacter diazotrophicus. FEMS Microbiol Lett 176: 301–309Google Scholar
  104. 104.
    Tejera, N, Lluch, C, Martínez-Toledo, MV, González-López, J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270: 223–232Google Scholar
  105. 105.
    Tuuminen, T, Heinäsmäki, T, Kerttula, T (2006) First report of bacteremia by Asaia bogorensis, in a patient with a history of intravenous-drug abuse. J Clin Microbiol 44: 3048–3050PubMedGoogle Scholar
  106. 106.
    Ureta, A, Nordlund, S (2001) Glutamine synthetase from Acetobacter diazotrophicus: properties and regulation. FEMS Microbiol Lett 202: 177–180PubMedGoogle Scholar
  107. 107.
    Ureta, A, Nordlund, S (2002) Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII Protein. J Bacteriol 184: 5805–5809PubMedGoogle Scholar
  108. 108.
    Vinagre, F, Vargas, C, Schwarcz, K, Cavalcante, J, Nogueira, EM, Baldani, JI, Ferreira, PCG, Hemerly, AS (2006) SHR5: a novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association. J Exp Bot 57: 559–569PubMedGoogle Scholar
  109. 109.
    Vargas, C, Pádua, VLMD, Nogueira, EDM, Vinagre, F, Masuda, HP, Silva, FRD, Baldani, JI, Ferreira, PCG, Hemerly, AS (2003) Signaling pathways mediating the association between sugarcane and endophytic diazotrophic bacteria: a genomic approach. Symbiosis 35: 159–180Google Scholar
  110. 110.
    Yamada, Y, Hoshino, KI, Ishikawa, T (1998) Gluconacetobacter nom.corrig. Gluconacetobacter (sic). In: validation of publication of new names and new combinations previously effectively published out side the IJSB. List no. 64. Int J Syst Bacteriol 48: 327–328Google Scholar
  111. 111.
    Youssef, HH, Fayez, M, Monib, M, Hegazi, N (2004) Gluconacetobacter diazotrophicus: a natural endophytic diazotroph of Nile delta sugarcane capable of establishing an endophytic association with wheat. Biol Fertil Soils 39: 391–397Google Scholar
  112. 112.
    Walsh, KB, Brown, SM, Harrison, DK (2006) Can a N2 fixing Gluconacetobacter diazotrophicus association with sugarcane be achieved. Aust J Agric Res: 57: 235–241Google Scholar
  113. 113.
    Wiggins, LF (1952) Chromatography of cane non-sugars. Int Sugar J 54: 324–326Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • V.S. Saravanan
    • 1
    • 2
  • M. Madhaiyan
    • 2
  • Jabez Osborne
    • 1
  • M. Thangaraju
    • 3
  • T.M. Sa
    • 2
  1. 1.School of Bio-Technology, Chemical and Bio-Medical EngineeringVellore Institute of Technology (VIT) UniversityVelloreIndia
  2. 2.Department of Agricultural ChemistryChungbuk National UniversityCheongjuSouth Korea
  3. 3.Department of Agricultural MicrobiologyTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations