Microbial Ecology

, Volume 54, Issue 4, pp 761–770 | Cite as

Isolation and Characterization of Diuron-degrading Bacteria from Lotic Surface Water

  • Isabelle Batisson
  • Stéphane Pesce
  • Pascale Besse-Hoggan
  • Martine Sancelme
  • Jacques Bohatier


The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1–V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.


  1. 1.
    Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402PubMedCrossRefGoogle Scholar
  2. 2.
    Četkauskaité, A, Grigonis, U, Berinskiené, J (1998) Biodegradation: selection of suitable model. Ecotoxicol Environ Saf 40: 19–28PubMedCrossRefGoogle Scholar
  3. 3.
    Cullington, JE, Walker, A (1999) Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol Biochem 31: 677–686CrossRefGoogle Scholar
  4. 4.
    Dejonghe, W, Berteloot, E, Goris, J, Boon, N, Crul, K, Maertens, S, Höfte, M, De Vos, P, Verstraete, W, Top, EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69: 1532–1541PubMedCrossRefGoogle Scholar
  5. 5.
    El Deeb, BA, Soltan, SM, Ali, AM, Ali, KA (2000) Detoxification of the herbicide diuron by Pseudomonas sp. Folia Microbiol 45: 211–216Google Scholar
  6. 6.
    El-Dib, MA, Abou-Waly, HF (1998) Biodegradation of some triazines and phenylureas in surface waters. Water Res 32: 1881–1887CrossRefGoogle Scholar
  7. 7.
    El Fantroussi, S, Verschuere, L, Verstraete, W, Top, EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16SrRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65: 982–988PubMedGoogle Scholar
  8. 8.
    El Fantroussi, S (2000) Enrichment and molecular characterization of a bacterial culture that degrades Methoxy-Methyl urea herbicides and their aniline derivatives. Appl Environ Microbiol 66: 5110–5115PubMedCrossRefGoogle Scholar
  9. 9.
    Ellis, PA, Camper, ND (1982) Aerobic degradation of diuron by aquatic microorganisms. J Environ Sci Health B 17: 277–289PubMedCrossRefGoogle Scholar
  10. 10.
    El Sebai, T, Lagacherie, B, Soulas, G, Martin-Laurent, F (2004) Isolation and characterisation of an isoproturon-mineralising Methylopila sp. TES from French agricultural soil. FEMS Microbiol Lett 239: 103–110PubMedCrossRefGoogle Scholar
  11. 11.
    Esposito, E, Paulillo, SM, Manfio, GP (1998) Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 37: 541–548PubMedCrossRefGoogle Scholar
  12. 12.
    Field, JA, Reed, RL, Sawyer, TE, Griffith, SM, Wigington, PJ (2003) Diuron occurrence and distribution in soil and surface and ground water associated with grass seed production. J Environ Qual 32: 171–179PubMedCrossRefGoogle Scholar
  13. 13.
    Geissbuhler, H (1973) The substituted ureas. In: Kearney, PC, Kaufman, DD (Eds.) Degradation of Herbicides, Marcel Dekker, New York, pp 79–111Google Scholar
  14. 14.
    Giacomazzi, S, Cochet, N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56: 1021–1032PubMedCrossRefGoogle Scholar
  15. 15.
    Heikinheimo, A, Lindström, M, Korkeala, H (2004) Enumeration and isolation of cpe-positive Clostridium perfringens spores from feces. J Clin Microbiol 42: 3992–3997PubMedCrossRefGoogle Scholar
  16. 16.
    Hill, GD, MacGahen, JW, Baker, HM, Finnerty, DW, Bingeman, CW (1955) The fate of substituted urea herbicides in agricultural soils. Agron J 47: 93–104CrossRefGoogle Scholar
  17. 17.
    IFEN (2004) Etudes et travaux no. 42 (Juillet 2004): les pesticides dans les eaux—Sixième bilan annuel—Données 2002Google Scholar
  18. 18.
    Joynt, J, Bischoff, M, Turco, R, Konopka, A, Nakatsu, CH (2006) Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microb Ecol 51: 209–219PubMedCrossRefGoogle Scholar
  19. 19.
    Khadrani, A, Seigle-Murandi, F, Steiman, R, Vroumsia, T (1999) Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 38: 3041–3050PubMedCrossRefGoogle Scholar
  20. 20.
    Kopczynski, ED, Bateson, MM, Ward, DM (1994) Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol 60: 746–748PubMedGoogle Scholar
  21. 21.
    Landry, D, Dousset, S, Andreux, F (2006) Leaching of oryzalin and diuron through undisturbed vineyard soil columns under outdoor conditions. Chemosphere 62: 1736–1747PubMedCrossRefGoogle Scholar
  22. 22.
    Lane, DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E, Goodfellow, M (Eds.) Nucleic Acid Techniques in Bacterial Systematics, John Wiley & Sons, Inc., New York, NY, pp 115–148Google Scholar
  23. 23.
    Leu, C, Singer, H, Stamm, C, Muller, SR, Schwarzenbach, RP (2004) Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment. Environ Sci Technol 38: 3827–3834PubMedCrossRefGoogle Scholar
  24. 24.
    Leu, C, Singer, H, Stamm, C, Muller, SR, Schwarzenbach, RP (2004) Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application. Environ Sci Technol 38: 3835–3841PubMedCrossRefGoogle Scholar
  25. 25.
    Ludwig, W, Strunk, O, Westram, R, Richter, L, Meier, H, Yadhukumar, Buchner, A, Lai, T, Steppi, S, Jobb, G, Forster, W, Brettske, I, Gerber, S, Ginhart, AW, Gross, O, Grumann, S, Hermann, S, Jost, R, Konig, A, Liss, T, Lussmann, R, May, M, Nonhoff, B, Reichel, B, Strehlow, R, Stamatakis, A, Stuckmann, N, Vilbig, A, Lenke, M, Ludwig, T, Bode, A, Schleifer, KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371PubMedCrossRefGoogle Scholar
  26. 26.
    Maidak, BL, Cole, JR, Parker, CT, Jr, Garrity, GM, Larsen, N, Li, B, Lilburn, TG, McCaughey, MJ, Olsen, GJ, Overbeek, R, Pramanik, S, Schmidt, TM, Tiedje, JM, Woese, CR (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27: 171–173PubMedCrossRefGoogle Scholar
  27. 27.
    Manzo, S, Buono, S, Cremisini, C (2006) Toxic effect of irgarol and diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality. Arch Environ Contam Toxicol 51: 61–68PubMedCrossRefGoogle Scholar
  28. 28.
    Muyzer, G, de Waal, EC, Uitterlinden, AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 S rRNA. Appl Environ Microbiol 59: 695–700PubMedGoogle Scholar
  29. 29.
    Pesce, S, Fajon, C, Bardot, C, Bonnemoy, F, Portelli, C, Bohatier, J (2006) Effects of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquat Toxicol 78: 303–314PubMedCrossRefGoogle Scholar
  30. 30.
    Phyt’eauvergne (2004) Rapport d’activités du groupe régional d’action contre la pollution des eaux naturelles par les produits phytosanitaires, année 2003. Phyt’eauvergne, FranceGoogle Scholar
  31. 31.
    Prichard, T, Troiano, J, Marade, J, Guo, F, Canevari, M (2005) Movement of diuron and hexazinone in clay soil and infiltrated pond water. J Environ Qual 34: 2005–2017PubMedCrossRefGoogle Scholar
  32. 32.
    Ramwell, CT, Heather, AI, Shepherd, J (2002) Herbicide loss following application to a roadside. Pest Manag Sci 58: 695–701PubMedCrossRefGoogle Scholar
  33. 33.
    Roberts, SJ, Walker, A, Cox, L, Weich, SJ (1998) Isolation of isoproturon-degrading bacteria from treated soil via three different routes. J Appl Microbiol 85: 309–316PubMedCrossRefGoogle Scholar
  34. 34.
    Rousseaux, S, Hartmann, A, Soulas, G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36: 211–222PubMedCrossRefGoogle Scholar
  35. 35.
    Rupp, DE, Peachey, RE, Warren, KL, Selker, JS (2006) Diuron in surface runoff and tile drainage from two grass-seed fields. J Environ Qual 35: 303–311PubMedCrossRefGoogle Scholar
  36. 36.
    Shelton, DR, Khader, S, Karns, JS, Pogell, BM (1996) Metabolism of twelve herbicides by Streptomyces. Biodegradation 7: 129–136PubMedCrossRefGoogle Scholar
  37. 37.
    Snellinx, Z, Taghavi, S, Vangronsveld, J, van der Lelie, D (2003) Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation 14: 19–29PubMedCrossRefGoogle Scholar
  38. 38.
    Sobieszczanski, J, Rodziewicz, A, Stempniewicz, R (1981) Microbiological transformation of herbicides in catabolic processes. Part II: the effect of diuron on the respiration activity of selected bacterial strains. Rocz Glebozn 32: 105–113Google Scholar
  39. 39.
    Sørensen, SR, Ronen, Z, Aamand, J (2001) Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl Environ Microbiol 67: 5403–5409PubMedCrossRefGoogle Scholar
  40. 40.
    Sørensen, SR, Bending, GD, Jacobsen, CS, Walker, A, Aamand, J (2003) Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiol Ecol 45: 1–11CrossRefPubMedGoogle Scholar
  41. 41.
    Sumpono, Perotti, P, Belan, A, Forestier, C, Lavedrine, B, Bohatier, J (2003) Effect of diuron on aquatic bacteria in laboratory-scale wastewater treatment ponds with special reference to Aeromonas species studied by colony hybridization. Chemosphere 50: 445–455PubMedCrossRefGoogle Scholar
  42. 42.
    Tillmanns, GM, Wallnöffer, PR, Engelhardt, G, Olie, K, Huntzinger, O (1978) Oxidative dealkylation of five phenylurea herbicides by the fungus Cunninghamella echinulata Thaxter. Chemosphere 1: 59–74CrossRefGoogle Scholar
  43. 43.
    Tixier, C, Bogaerts, P, Sancelme, M, Bonnemoy, F, Twagilimana, L, Cuer, A, Bohatier, J, Veschambre, H (2000) Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manag Sci 56: 455–462CrossRefGoogle Scholar
  44. 44.
    Tixier, C, Sancelme, M, Bonnemoy, F, Cuer, A, Veschambre, H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicology, and biotransformation. Environ Toxicol Chem 20: 1381–1389PubMedCrossRefGoogle Scholar
  45. 45.
    Tixier, C, Sancelme, M, Ait-Aissa, S, Widehem, P, Bonnemoy, F, Cuer, A, Truffaut, N, Veschambre, H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46: 519–526PubMedCrossRefGoogle Scholar
  46. 46.
    Tomlin, C (Ed.) (1994) The pesticide manual. 10th ed. British Crop Protection Council. Farnham. Surrey. United KingdomGoogle Scholar
  47. 47.
    Turnbull, GA, Cullington, JE, Walker, A, Morgan, JAW (2001) Identification and characterisation of a diuron-degrading bacterium. Biol Fertil Soils 33: 472–476CrossRefGoogle Scholar
  48. 48.
    Turnbull, GA, Ousley, M, Walker, A, Shaw, E, Morgan, JAW (2001) Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl Environ Microbiol 67: 2270–2275PubMedCrossRefGoogle Scholar
  49. 49.
    Vianello, M, Vischetti, C, Scarponi, L, Zanin, G (2005) Herbicide losses in runoff events from a field with a low slope: role of a vegetative filter strip. Chemosphere 61: 717–725PubMedCrossRefGoogle Scholar
  50. 50.
    Vroumsia, T, Steiman, R, Seigle-Murandi, F, Benoit-Guyod, JL, Khadrani, A (1996) Biodegradation of three substituted phenylurea herbicides (chlortoluron, diuron, and isoproturon) by soil fungi. A comparative study. Chemosphere 33: 2045–2056PubMedCrossRefGoogle Scholar
  51. 51.
    Weisburg, WG, Barns, SM, Pelletier, DA, Lane, DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703PubMedGoogle Scholar
  52. 52.
    Widehem, P, Aït-Aïssa, S, Tixier, C, Sancelme, M, Veschambre, H, Truffaut, N (2002) Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2. Chemosphere 46: 527–534PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Isabelle Batisson
    • 1
  • Stéphane Pesce
    • 1
  • Pascale Besse-Hoggan
    • 2
  • Martine Sancelme
    • 2
  • Jacques Bohatier
    • 1
  1. 1.Laboratoire de Biologie des ProtistesUMR CNRS 6023, Université Blaise PascalAubière cedexFrance
  2. 2.Laboratoire de Synthèse Et Etude de Systèmes à Intérêt BiologiquesUMR 6504 CNRS, Université Blaise PascalAubière cedexFrance

Personalised recommendations