Microbial Ecology

, Volume 54, Issue 2, pp 363–373 | Cite as

Nitrogen Fixation in Microbial Mat and Stromatolite Communities from Cuatro Cienegas, Mexico

  • L. I. Falcón
  • R. Cerritos
  • L. E. Eguiarte
  • V. Souza
Article

Abstract

Nitrogen fixation (nitrogenase activity, NA) of a microbial mat and a living stromatolite from Cuatro Cienegas, Mexico, was examined over spring, summer, and winter of 2004. The goal of the study was to characterize the diazotrophic community through molecular analysis of the nifH gene and using inhibitors of sulfate reduction and oxygenic and anoxygenic photosynthesis. We also evaluated the role of ultraviolet radiation on the diazotrophic activity of the microbial communities. Both microbial communities showed patterns of NA with maximum rates during the day that decreased significantly with 3-3,4-dichlorophenyl-1′,1′-dimethylurea, suggesting the potential importance of heterocystous cyanobacteria. There is also evidence of NA by sulfur-reducing bacteria in both microbial communities suggested by the negative effect exerted by the addition of sodium molybdate. Elimination of infrared and ultraviolet radiation had no effect on NA. Both microbial communities had nifH sequences that related to group I, including cyanobacteria and purple sulfur and nonsulfur bacteria, as well as group II nitrogenases, including sulfur reducing and green sulfur bacteria.

References

  1. 1.
    Allwood, AC, Walter, MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaen era of Australia. Nature 441: 714–718PubMedCrossRefGoogle Scholar
  2. 2.
    Bebout, BM, Paerl, HW, Crocker, KM, Prufert, LE (1987) Diel interactions of oxygenic photosynthesis and N2 fixation (acetylene reduction) in a marine microbial mat community. Appl Environ Microbiol 53: 2353–2362PubMedGoogle Scholar
  3. 3.
    Bebout, BM, Fitzpatrick, MW, Paerl, HW (1993) Identification of the sources of energy for nitrogen fixation and physiological characterization of nitrogen-fixing members of a marine microbial mat community. Appl Environ Microbiol 59: 1495–1503PubMedGoogle Scholar
  4. 4.
    Bergman, B, Gallon, JR, Rai, AN, Stal, LJ (1997). N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19: 139–185CrossRefGoogle Scholar
  5. 5.
    Berman-Frank, I, Cullen, JT, Shaked, Y, Sherrell, RM, Falkowski, PG (2001). Iron availability, cellular iron quotas and nitrogen fixation in Trichodesmium. Limnol Oceanogr 46: 1249–1260CrossRefGoogle Scholar
  6. 6.
    Berman-Frank, I, Lundgren, P, Chen, YB, Küpper, H, Kolber, Z, Bergman, B, Falkowsky, P (2001). Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294: 1532–1537CrossRefGoogle Scholar
  7. 7.
    Berman-Frank, I, Lundgren, P, Falkowski, P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154: 157–164PubMedCrossRefGoogle Scholar
  8. 8.
    Brassier, MD, Green, OR, Jephcoat, AP, Kleppe, AK, Van Kranendonk, MJ, Lindsay, JF, Steele, A, Grassineau, NV (2002) Questioning the evidence for earth’s oldest fossils. Nature 422: 76–81CrossRefGoogle Scholar
  9. 9.
    Brassier, MD, Green, O, Lindsay, J, Steele, A (2004) Earth’s oldest (∼3.5 Ga) fossils and the “Early Eden Hypothesis”: Questioning the evidence. Orig Life Evol Biosph 34: 257–269CrossRefGoogle Scholar
  10. 10.
    Brenowitz, S, Castenholz, RW (1997) Long-term effects of UV and visible irradiance on natural populations of a scytonemin-containing cyanobacterium (Calothrix sp.). FEMS Microbiol Ecol 343–352Google Scholar
  11. 11.
    Capone, DG (1993) Determination of nitrogenase activity in aquatic samples using the acetylene reduction procedure. In: Kemp PF, Sherr, BF, Sherr, EB, Cole, JJ (Eds.) Handbook of Methods in Aquatic Microbial Ecology, Lewis Press, Boca Raton, FL, pp 621–631Google Scholar
  12. 12.
    Castenholz, RW, Garcia-Pichel, F (2000) Cyanobacterial responses to UV-radiation. In: Whitton, BA, Potts, M (Eds.) Ecology of Cyanobacteria: Their Diversity in Time and Space, Kluwer, Dordrecht, pp 591–611Google Scholar
  13. 13.
    Des Marais, DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204: 160–167PubMedCrossRefGoogle Scholar
  14. 14.
    de Wit, R, Falcón, LI, Charpy-Roubaud, C (2005) Heterotrophic dinitrogen fixation (acetylene reduction) in phosphate fertilized Microcoleus chthonoplastes microbial mat from the hypersaline inland lake “la Salada de Chiprana” (NE Spain). Hydrobiology 534: 245–253CrossRefGoogle Scholar
  15. 15.
    Dugdale, RC, Goering, JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12: 196–206CrossRefGoogle Scholar
  16. 16.
    Eisen, JA et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A 99: 9509–9514PubMedCrossRefGoogle Scholar
  17. 17.
    Falcón, LI, Escobar-Briones, E, Romero, D (2002) Nitrogen fixation patterns displayed by cyanobacterial consortia in Alchichica crater-lake, Mexico. Hydrobiology 467: 71–78CrossRefGoogle Scholar
  18. 18.
    Falcón, LI, Carpenter, EJ, Cipriano, F, Bergman, B, Capone, DG (2004) N2-fixation by unicellular bacterioplankton in the Atlantic and Pacific Oceans: phylogeny and in situ rates. Appl Environ Microbiol 70: 765–770PubMedCrossRefGoogle Scholar
  19. 19.
    Fernández-Valiente, E, Quesada, A, Howard-Williams, C, Hawes, I (2001) N2 fixation in cyanobacterial mats from ponds on the McMurdo ice shelf, Antarctica. Microb Ecol 42: 338–349PubMedCrossRefGoogle Scholar
  20. 20.
    Garcia-Pichel, F, Castenholz, RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27: 395–409CrossRefGoogle Scholar
  21. 21.
    Garcia-Pichel, F, Al-Horani, FA, Farmer, JD, Ludwig, R, Wade, BD (2004) Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites. Geobiology 49–57Google Scholar
  22. 22.
    Gest, H (1994) Discovery of the heliobacteria. Photosynth Res 41: 17–21CrossRefGoogle Scholar
  23. 23.
    Johannesson, KH, Cortés, A, Kilroy, KC (2004) Reconnaissance isotopic and hydrochemical study of Cuatro Ciénegas groundwater, Coahuila, México. J South Am Earth Sci 17: 171–180CrossRefGoogle Scholar
  24. 24.
    Kemp, PF, Aller, JY (2004) Estimating prokaryotic diversity: when are 16S rDNA libraries large enough? Limnol Oceanogr: Methods 2: 114–125Google Scholar
  25. 25.
    Kirshtein, JD, Paerl, HW, Zehr, J (1991) Amplification, cloning and sequencing of a nifH segment from aquatic microorganisms and natural communities. Appl Environ Microbiol 57: 2645–2650PubMedGoogle Scholar
  26. 26.
    Ley, RE, Harris, JK, Wilcox, J, Spear, JR, Miller, SR, Bebout, BM, Maresca, JA, Bryant, DA, Sogin, ML, Pace, NR (2006) Unsuspected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72: 3685–3695PubMedCrossRefGoogle Scholar
  27. 27.
    Madigan, MT, Martinko, JM, Parker, J (2000) Brock Biology of Microorganisms. Prentice-Hall International, London, UK, pp 991Google Scholar
  28. 28.
    McKee, JW, Jone, NW, Long, LE (1990) Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. Geol Soc Amer Bull 102: 593–614CrossRefGoogle Scholar
  29. 29.
    Larimer, FW et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22: 55–61PubMedCrossRefGoogle Scholar
  30. 30.
    Omoregie, EO, Crumbliss, LL, Bebout, BM, Zehr, JP (2004) Determination of nitrogen-fixing phylotypes in Lyngbya sp. and Microcoleus chthonoplastes cyanobacterial mats from Guerrero Negro, Baja California, Mexico. Appl Environ Microbiol 70: 2119–2128PubMedCrossRefGoogle Scholar
  31. 31.
    Omoregie, EO, Crumbliss, LL, Bebout, BM, Zehr, JP (2004) Comparison of diazotrophic community structure in Lyngbya sp. and Microcoleus chthonoplastes dominated microbial mats from Guerrero Negro, Baja, Mexico. FEMS Microbiol Ecol 47: 305–318CrossRefPubMedGoogle Scholar
  32. 32.
    Overmann, J, García-Pichel, F (2005) The phototrophic way of life. In: Dworkin, M (Eds.) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., Springer, Berlin Heidelberg New York, p 89Google Scholar
  33. 33.
    Paerl, HW, Pinckney, JL, Steppe, TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 21: 11–26CrossRefGoogle Scholar
  34. 34.
    Pinckney, JL, Paerl, HW (1997) Anoxygenic photosynthesis and nitrogen fixation by a microbial mat community in a Bahamian hypersaline lagoon. Appl Environ Microbiol 63: 420–426PubMedGoogle Scholar
  35. 35.
    Pinckney, J, Paerl, HW, Reid, RP, Bebout, B (1995) Ecophysiology of stromatolitic microbial mats, Stocking Island, Exuma-Cay, Bahamas. Microb Ecol 29: 19–37CrossRefGoogle Scholar
  36. 36.
    Raymond, J, Siefert, JL, Staples, CR, Blankenship, RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21: 541–554PubMedCrossRefGoogle Scholar
  37. 37.
    Rippka, R, Deruelles, J, Waterbury, JB, Herdman, M, Stanier, RY (1979) Generic assignments, Strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61Google Scholar
  38. 38.
    Schopf, JW, Packer, BM (1987) Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science 237: 70–73PubMedCrossRefGoogle Scholar
  39. 39.
    Sheridan, RP (2001) Role of ultraviolet radiation in maintaining the three dimensional structure of a cyanobacterial mat community and facilitating nitrogen fixation. J Phycol 37: 731–737CrossRefGoogle Scholar
  40. 40.
    Stal, LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities (Tansley Review 84). New Phytol 131: 1–32CrossRefGoogle Scholar
  41. 41.
    Stal, LJ, Caumette, P (1994) Microbial mats, structure, development and environmental significance. NATO ASI Series 35, Springer, Berlin Heidelberg New York, p 463Google Scholar
  42. 42.
    Steppe, TF, Paerl, HW (2002) Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial mat. Aquat Microb Ecol 28: 1–12Google Scholar
  43. 43.
    Steunou, AS, Bhaya, D, Bateson, MM, Melendrez, MC, Ward, DM, Brecht, E, Peters, JW, Kuhl, M, Grossman, AR (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular themophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci USA 103(7): 2398–2403PubMedCrossRefGoogle Scholar
  44. 44.
    Souza, et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci USA 103: 6545–6570Google Scholar
  45. 45.
    Sprent, JI, Sprent, P (1990) Nitrogen-fixing organisms: Pure and applied aspects. Chapman & Hall, London, pp 256Google Scholar
  46. 46.
    Stryer, L (1995) Biochemistry. Freeman and Co., NY, USA, p 1064Google Scholar
  47. 47.
    Tomitani, A, Knoll, AH, Cavanaugh, CM, Ohno, T (2006) The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103: 5442–5447PubMedCrossRefGoogle Scholar
  48. 48.
    Van Gemerden, H (1993) Microbial mats: a joint venture. Mar Geol 113: 3–25CrossRefGoogle Scholar
  49. 49.
    Wall, JD (2004) Rain or shine—a phototroph that delivers. Nat Biotechnol 22: 40–41PubMedCrossRefGoogle Scholar
  50. 50.
    Walter, MR, Grotzinger, JP, Schopt, JW (1992) Proterozoic stromatolites. In: Schopf, JW, Klein, C (Eds.) The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge, pp 253–260Google Scholar
  51. 51.
    Zani, S, Mellon, MT, Collier, JL, Zehr, JP (2000) Expression of nifH genes in natural microbial assemblages of Lake George, NY detected with RT-PCR. Appl Environ Microbiol 66: 3119–3124PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang, Y, Pohlmann, EL, Ludden, PW, Roberts, GP (2000) Mutagenesis and functional characterization of glnB, glnA and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 182: 983–992PubMedCrossRefGoogle Scholar
  53. 53.
    Zhou, J, Bruns, MA, Tiedje, JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62: 316–322PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • L. I. Falcón
    • 1
  • R. Cerritos
    • 1
  • L. E. Eguiarte
    • 1
  • V. Souza
    • 1
  1. 1.Instituto de Ecología, Departamento de Evolución MolecularUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations