Microbial Ecology

, Volume 54, Issue 3, pp 469–477

A Comparison of the Benthic Bacterial Communities Within and Surrounding Dreissena Clusters in Lakes

  • Rachel N. Lohner
  • Von Sigler
  • Christine M. Mayer
  • Csilla Balogh


The impact of Dreissena (Dreissena polymorpha and D. bugensis) on the benthic bacterial community in lakes is largely unknown. Therefore, we quantified differences in the structure and activity of bacterial communities living in sediments (1) associated with Dreissena clusters, and (2) unassociated with established clusters (lake bottom sediments). Dreissena clusters and sediments were collected from locations in Lake Erie, Lake Ontario, and several inland lakes. Denaturing gradient gel electrophoresis (DGGE) analysis of the benthic bacterial community showed that the bacterial populations selected for by Dreissena represent a subset of the bottom communities and are geographically distinct. Community-level physiological profiling (CLPP) showed that overall bacterial activity and metabolic diversity were enhanced by the presence of clusters in all samples, with the exception of those harvested from the two Lake Erie sites. Therefore, Dreissena appears to affect both structure and metabolic function of the benthic bacterial community and may have yet unexplored ecosystem and food web consequences.


  1. 1.
    Baker, DB (1985) Regional water quality impacts of intensive row-crop agriculture: a Lake Erie basin case study. J Soil Water Cons 40: 125–131Google Scholar
  2. 2.
    Bitton, G, Koopman, B (1986) Biochemical tests for toxicity screening. In: Bitton, G, Dutka, BJ (Eds.) Toxicity Testing Using Microorganisms, vol. 1, CRC Press, Boca Raton, pp 27–55Google Scholar
  3. 3.
    Bobeldyk, AM, Bossenbroek, JM, Evan-White, MA, Lodge, DM, Lamberti, GA (2005) Secondary spread of zebra mussels (Dreissena polymorpha) in lake–stream systems. Ecoscience 12: 414–421CrossRefGoogle Scholar
  4. 4.
    Bolsenga, SJ, Ladewski, T (1993) Hydrosphere—the water. In: Bolsenga, SJ, Herdendorf, CE (Eds.) Lake Erie and Lake St. Clair Handbook, Wayne State University Press, Detroit, pp 178–180Google Scholar
  5. 5.
    Borsodi, AK, Vladár, P, Cech, G, Gedeon, G, Beszteri, B, Micsinai, A, Reskóné, MN, Márialigeti, K (2003) Bacterial activities in the sediment of Lake Velencei, Hungary. Hydrobiologia 506: 721–728CrossRefGoogle Scholar
  6. 6.
    Botts, PS, Patterson, BA, Schloesser, DW (1996) Zebra mussel effects on benthic invertebrates: physical or biotic? J North Am Benthol Soc 15: 179–184CrossRefGoogle Scholar
  7. 7.
    Carpenter, SR, Kitchell, JF, Hodson, JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35: 634–639CrossRefGoogle Scholar
  8. 8.
    Casamayor, EO, Schäfer, H, Baneras L, Pedros-Alio, C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66: 499–508PubMedCrossRefGoogle Scholar
  9. 9.
    De Mazancourt, C, Loreau, M, Abbadie, L (1998). Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology 79: 2242–2252.CrossRefGoogle Scholar
  10. 10.
    Dermott, R, Kerec, D (1997) Changes to the deepwater benthos of eastern Lake Erie since the invasion of Dreissena: 1979–1993. Can J Fish Aquat Sci 54: 922–930CrossRefGoogle Scholar
  11. 11.
    Díez, B, Pedros-Alio, C, Marsh, TL, Massana, R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67: 2942–2951PubMedCrossRefGoogle Scholar
  12. 12.
    Felske, A, Engelen, B, Nubel, U, Backhaus, H (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62: 4162–4167PubMedGoogle Scholar
  13. 13.
    Fisher, SG, Lehrman, LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 80: 1579–1583CrossRefGoogle Scholar
  14. 14.
    Frischer, ME, Nierzwicki-Bauer, SA, Parsons, RH, Vathanodorn, K, Waitkus, KR (2000) Interactions between zebra mussels (Dreissena Polymorpha) and microbial communities. Can J Fish Aquat Sci 57: 591–599CrossRefGoogle Scholar
  15. 15.
    Garland, JL (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem 28: 213–221CrossRefGoogle Scholar
  16. 16.
    Garland, JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24: 289–300CrossRefGoogle Scholar
  17. 17.
    Graca, MAS, Cressa, C, Gessner, MO, Feio, MJ, Callies, KA, Barrios, C (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biol 46: 947–957CrossRefGoogle Scholar
  18. 18.
    Haack, SK, Garchow, H, Klug, MJ, Forney, LJ (1995) Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol 61: 1458–1468PubMedGoogle Scholar
  19. 19.
    Hane, BG, Jager, K, Drexler, HG (1993) The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14: 967–972PubMedCrossRefGoogle Scholar
  20. 20.
    Hebert, PDN, Muncaster, BW, Mackie, GL (1989) Ecological and genetic studies on Dreissena Polymorpha (Pallas)—a new mollusk in the Great Lakes. Can J Fish Aquat Sci 46: 1587–1591Google Scholar
  21. 21.
    Hecky, RE, Smith, REH, Barton, DR, Guildford, SJ, Taylor WD, Charlton, MN, Howell, T (2004) The nearshore phosphorous shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can J Fish Aquat Sci 61: 1285–1293CrossRefGoogle Scholar
  22. 22.
    Herdendorf, C (1993) Lithoshpere—the solid earth. In: Bolsenga, SJ, Herdendorf, CE (Eds.) Lake Erie and Lake St. Clair handbook, Wayne State University Press, Detroit, pp 11–104Google Scholar
  23. 23.
    Herdendorf, CE, Krieger, KA (1989) Overview of Lake Erie and its estuaries with the Great Lakes ecosystem. In: Krieger, KA (Ed.) Lake Erie Estuarine Systems: Issues, Resources, Status, and Management, NOAA Estuary of the Month Seminar Series No. 14, US Dept. of Commerce, pp 1–35Google Scholar
  24. 24.
    Jobson, JD (1991) Applied Multivariate Data Analysis, vol 1, Springer Verlag, New YorkGoogle Scholar
  25. 25.
    Jones, CG, Lawton, JH, Shachak, M (1994) Organisms as ecosystem engineers. Oikos 69: 373–386CrossRefGoogle Scholar
  26. 26.
    Karatayev, AY, Burlakova, LE, Padilla, DK (2002) Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In: Leppäkowcki, E, Gollasch, S, Olenin, S (Eds.) Invasive Aquatic Species of Europe, Distribution, impacts and management, Kluwer, Boston, pp 433–446Google Scholar
  27. 27.
    Karatayev, AY, Lyubov, LE, Padilla, DK (1997) The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in eastern Europe. J Shellfish Res 16: 187–203Google Scholar
  28. 28.
    Konopka, A, Oliver, L, Turco, RF (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35: 103–115PubMedCrossRefGoogle Scholar
  29. 29.
    Kryger, J, Riisgard, HU (1988) Filtration rate capacities in six species of European fresh water bivalves. Oecologia 77: 34–38CrossRefGoogle Scholar
  30. 30.
    Lavrentyev, PJ, Gardner, WS, Longyuan, Y (2000) Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment–water interface. Aquat Microb Ecol 21: 187–194CrossRefGoogle Scholar
  31. 31.
    Lowe, RL, Pillsbury, RW (1995) Shifts in benthic algal community structure and function following the appearance of zebra mussels (Dreissena polymorpha) in Saginaw Bay, Lake Huron. J Great Lakes Res 21: 558–566CrossRefGoogle Scholar
  32. 32.
    Mayer, CM, Keats, RA, Rudstam, LG, Mills, EL (2002) Scale-dependent effects of zebra mussels on benthic invertebrates in a large eutrophic lake. J North Am Benthol Soc 21: 616–633CrossRefGoogle Scholar
  33. 33.
    McNaughton, SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40: 329–336CrossRefGoogle Scholar
  34. 34.
    Muyzer, G, De Waal, EC, Uitterlinden, AG (1993) Gradient gel electrophoresis analysis of polymerase chain reaction-amplified genetic coding for 16S rRNA. Appl Environ Microbiol 59: 695–700PubMedGoogle Scholar
  35. 35.
    Muyzer, G, Smalla, K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127–141PubMedCrossRefGoogle Scholar
  36. 36.
    Nübel, U, Engelen, B, Felske, A, Snaidr, J, Wieshuber, A, Amann, R, Ludwig, W, Backhaus, H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178: 5636–5643PubMedGoogle Scholar
  37. 37.
    Pearce, DA (2005) The structure and stability of the bacterioplankton community in Antarctic freshwater lakes, subject to extremely rapid environmental change. FEMS Microbiol Ecol 53: 61–72PubMedCrossRefGoogle Scholar
  38. 38.
    Pillsbury, RW, Lowe, RL, Dong Pan, Y, Greenwood, JL (2002) Changes in the benthic algal community and nutrient limitation in Saginaw Bay, Lake Huron, during the invasion of the zebra mussel (Dreissena polymorpha). J North Am Benthol Soc 21: 235–252CrossRefGoogle Scholar
  39. 39.
    Rasul, N, Coakley, JP, Pippert, R (1999) Sedimentary environment of western Lake Erie: geologic setting, sediment distribution and anthropogenic effects. In: Munawar, M, Edsall, T, Munawar, IF (Eds.) State of Lake Erie: Past, Present and Future, Backhuys Publishers, The Netherlands, pp 57–74Google Scholar
  40. 40.
    Ricciardi, A, Whoriskey, FG, Rasmussen, JB (1997) The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrata. Can J Fish Aquat Sci 54: 2596–2608CrossRefGoogle Scholar
  41. 41.
    Roditi, HA, Strayer, DL, Findlay, SEG (1997) Characteristics of zebra mussel (Dreissena polymorpha) biodeposits in a tidal freshwater estuary. Arch Hydrobiol 140: 207–219Google Scholar
  42. 42.
    Sigler, WV, Miniaci, C, Zeyer, J (2004) Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J Microbiol Methods 57: 17–22PubMedCrossRefGoogle Scholar
  43. 43.
    Sigler, WV, Zeyer, J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 43: 397–407PubMedCrossRefGoogle Scholar
  44. 44.
    Stewart, TW, Haynes, JM (1994) Benthic macroinvertebrate communities of southwestern Lake Ontario following invasion of Dreissena. J Greatt Lakes Res 20: 479–493Google Scholar
  45. 45.
    Stewart, TW, Miner, JG, Lowe, RL (1998) Quantifying mechanisms for zebra mussel effects on benthic macroinvertebrates: organic matter production and shell generated habitat. J North Am Benthol Soc 17: 81–94CrossRefGoogle Scholar
  46. 46.
    Vanderploeg, HA, Nalepa, TF, Jude, DJ, Mills, EL, Holeck, KT, Liebig, JR, Grigorovich, IA, Ojaveer, H (2002) Dispersal and emerging ecological impacts of Ponto-Caspian species emerging in the Laurentian Great Lakes. Can J Fish Aquat Sci 59: 1209–1228CrossRefGoogle Scholar
  47. 47.
    Zak, JC, Willig, MR, Moorhead, DL, Wildman, HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26: 1101–1108CrossRefGoogle Scholar
  48. 48.
    Zar, JH (1999) Biostatistical Analysis. Fourth Edition. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rachel N. Lohner
    • 1
  • Von Sigler
    • 2
  • Christine M. Mayer
    • 1
    • 2
  • Csilla Balogh
    • 3
    • 4
  1. 1.Lake Erie CenterThe University of ToledoOregonUSA
  2. 2.Department of Environmental SciencesThe University of ToledoToledoUSA
  3. 3.Department of LimnologyPannon UniversityVeszprémHungary
  4. 4.Balaton Limnological Research InstituteHungarian Academy of SciencesTihanyHungary

Personalised recommendations