Microbial Ecology

, Volume 54, Issue 2, pp 242–251 | Cite as

Molecular Evidence for Polyphyletic Origin of the Primary Symbionts of Sucking Lice (Phthiraptera, Anoplura)

Article

Abstract

Based on 16S rDNA analyses, the primary symbionts of sucking lice were found to form a polyphyletic assemblage of several distant lineages that have arisen several times within Enterobacteriaceae and at least once within Legionellaceae. Another independent lineage of endosymbiotic enterobacteria inhabits a sister group of the sucking lice, Rhynchophthirina. The inspection of 16S rDNA supports the symbiotic nature of the investigated bacteria; they display a typical trait of degenerative processes, an increased AT content (Adenine–Thymine content) in comparison with free-living bacteria. The calculation of divergence time between the closest anopluran and rhynchophthirine symbionts further support their independent origin. The results shown here, together with evidence from other groups, indicate that the significance of primary symbionts for blood-feeding insects should be reconsidered.

Notes

Acknowledgments

We are grateful to Břetislav Koudela, Kathy Stafford, and Ján Krištofík for providing the lice samples, and to anonymous reviewers for important comments. This work was supported by Grants 206/04/0520 (Grant Agency of the Czech Republic) and MSM 60076605801 (Ministry of Education, Czech Republic).

References

  1. 1.
    Aksoy, S, Pourhosseini, AA, Chow, A (1995) Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to Enterobacteriaceae. Insect Mol Biol 4: 5–22Google Scholar
  2. 2.
    Aschner, M (1934) Studies on the symbiosis of body louse. Elimination of the symbionts by centrifugation of the eggs. Parasitology 26: 309–314Google Scholar
  3. 3.
    Bandi, C, Sironi, M, Damiani, G, Magrassi, L, Nalepa, CA, Laudani, U, Sacchi, L (1995) The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. Proc R Soc Lond B 259: 293–299CrossRefGoogle Scholar
  4. 4.
    Barker, SC, Whiting, M, Johnson, KP, Murrell, A (2002) Phylogeny of the lice (Insecta, Phthiraptera) inferred from small subunit rRNA. Zool Scr 32: 407–414CrossRefGoogle Scholar
  5. 5.
    Baumann, P, Moran, NA, Baumann, L (1997) The evolution and genetics of aphid symbionts. Bioscience 47: 12–20CrossRefGoogle Scholar
  6. 6.
    Baumann, P, Moran, NA (1997) Non-cultivable microorganisms from symbiotic associations of insects and other hosts. Antonie van Leeuwenhoek 72: 39–48PubMedCrossRefGoogle Scholar
  7. 7.
    Baumann, P, Moran, NA, Baumann, L (2000) Bacteriocyte-associated endosymbionts in insect. Curr Opin Microbiol 3: 270–275PubMedCrossRefGoogle Scholar
  8. 8.
    Bender, W, Spierer, P, Hogness, DS (1983) Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol 168: 17–33PubMedCrossRefGoogle Scholar
  9. 9.
    Brynnel, UE, Kurland, CG, Moran, NA, Andersson, SGE (1998) Evolutionary rates for tuf genes in endosymbionts of aphids. Mol Biol Evol 15: 574–582PubMedGoogle Scholar
  10. 10.
    Buchner P (1965) Endosymbiosis of Animals with Plant Microorganisms. John Wiley and Sons, New YorkGoogle Scholar
  11. 11.
    Clark, M, Moran, NA, Baumann, P, Wernergreen, JJ (2000) Cospeciation between bacterial endosymbionts (Buchnera) and recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54: 517–525PubMedGoogle Scholar
  12. 12.
    Chen, X, Li, S, Aksoy, S, (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48: 49–58PubMedCrossRefGoogle Scholar
  13. 13.
    Douglas, AE, (1989) Mycetocyte symbionts in insects. Biol Rev 64: 409–434PubMedGoogle Scholar
  14. 14.
    Eberle, MW, McLean, DL, (1983) Observation of symbiote migration in human body lice with scanning and transmission electron microscopy. Can J Microbiol 28: 755–762CrossRefGoogle Scholar
  15. 15.
    Frank, SA, (1996) Host control of symbiont transmission: the separation of symbionts into germ and soma. Am Nat 148: 1113–1124CrossRefGoogle Scholar
  16. 16.
    Fukatsu, T (2001) Secondary intracellular symbiotic bacteria in aphids of the Genus Yamatocallis (Homoptera: Aphididae: Drepanosiphinae). Appl Environ Microbiol 67: 5315–5320PubMedCrossRefGoogle Scholar
  17. 17.
    Griffiths, GW, Beck, SD (1974) Effects of antibiotics on intracellular symbionts in pea Aphids, Acyrtosiphon pisum. Cell Tissue Res 148: 287–300PubMedCrossRefGoogle Scholar
  18. 18.
    Guindon, S, Gascuel, O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704PubMedCrossRefGoogle Scholar
  19. 19.
    Hill, PDS, Campbell, JA (1973) The production of symbiont-free Glossina morsitans and an associated loss of female fertility. Trans R Soc Trop Med Hyg 67: 727–728PubMedCrossRefGoogle Scholar
  20. 20.
    Huelsenbeck, JP, Ronquist, F (2001) Mr.Bayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755PubMedCrossRefGoogle Scholar
  21. 21.
    Itoh, T, Martin, W, Nei, M (2002) Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. Proc Natl Acad Sci USA 99: 12944–12948PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson, KP, Whiting, MF (2001) Multiple genes and the monophyly of Ischnocera (Insecta: Phthiraptera). Mol Phylogenet Evol 22: 101–110CrossRefGoogle Scholar
  23. 23.
    Johnson, KP, Yoshizawa, K, Smith, VS (2004) Multiple origin of parasitism in lice. Proc R Soc Lond B 271: 1771–1776CrossRefGoogle Scholar
  24. 24.
    Kyei-Poku, GK, Colwell, DD, Coghlin, P, Benkel B, Floate, KD (2005) On the ubiquity and phylogeny of Wolbachia in lice. Mol Ecol 14: 285–294PubMedCrossRefGoogle Scholar
  25. 25.
    Kim KC (1985) Coevolution of Parasitic Arthropods and Mammals. John Wiley, New YorkGoogle Scholar
  26. 26.
    Kumar, S, Tamura, K, Jakobsen, IB, Nei, M (2001) MEGA2, Molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245PubMedCrossRefGoogle Scholar
  27. 27.
    Lambert, DJ, Moran, NA (1998) Deleterious mutations destabilize ribosomal DNA in endosymbiotic bacteria. Proc Natl Acad Sci USA 95: 4458–4462PubMedCrossRefGoogle Scholar
  28. 28.
    Li, WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36: 96–99PubMedCrossRefGoogle Scholar
  29. 29.
    Mira, A, Moran, NA (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microbiol Ecol 44: 137–143CrossRefGoogle Scholar
  30. 30.
    Moran, N, Telang, A (1998) Bacteriocyte-associated symbionts of insects. BioScience 48: 295–304CrossRefGoogle Scholar
  31. 31.
    Moran, NA (1996) Accelerated evolution and Müller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93: 2873–2878PubMedCrossRefGoogle Scholar
  32. 32.
    Munson, MA, Baumann, P, Clark, MA, Baumann, L, Moran, NA, Voegtlin, DJ (1991) Evidence for the establishment of aphid–eubacterial endosymbiosis in an ancestor of four aphid families. J Bacteriol 173: 6321–6324PubMedGoogle Scholar
  33. 33.
    Munson, MA, Baumann, P, Moran, NA (1992) Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences. Mol Phylogenet Evol 1: 26–30PubMedCrossRefGoogle Scholar
  34. 34.
    Nogge, G (1976) Sterility of tsetse flies caused by loss of symbionts. Experentia 32: 995CrossRefGoogle Scholar
  35. 35.
    Nogge, G (1978) Aposymbiotic tsetse flies, Glossna morsitans morsitans, obtained by feeding on rabbits immunized specifically with symbionts. J Insect Physiol 24: 299–304PubMedCrossRefGoogle Scholar
  36. 36.
    O’Neil, S, Giordano, R, Colbert, AME, Karr, TL, Robertson, HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89: 2699–2702CrossRefGoogle Scholar
  37. 37.
    O’Neill, S, Gooding, RH, Aksoy, S (1993) Phylogenetically distant symbiotic organisms reside in Glossina midgut and ovary tissues. Med Vet Entomol 7: 377–383PubMedGoogle Scholar
  38. 38.
    Perotti, MA, Catalá, SS, Ormeño, AV, Żelazowska, M, Biliński, SM, Braig, HR (2004) The sex ratio distortion in the human head louse is conserved over time. BMC Genetics 5: 10PubMedCrossRefGoogle Scholar
  39. 39.
    Posada, D, Crandall, KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818PubMedCrossRefGoogle Scholar
  40. 40.
    Puchta, O (1955) Experimentelle Untersuchungen űber die Bedeutung der symbiose der Kleiderlaus Pediculus vestimenti Burm. Z Parastenkd 17: 1–40Google Scholar
  41. 41.
    Reed, DL, Hafner, MS (2002) Phylogenetic analysis of bacterial communities associated with ectoparasitic chewing lice of pocket gophers: a culture independent approach. Microbiol Ecol 44: 48–93CrossRefGoogle Scholar
  42. 42.
    Ries, E (1931) Die Symbiose der Läuse und Federlinge. Z Morphol Ökol Tiere 20: 233–367CrossRefGoogle Scholar
  43. 43.
    Sandström, JP, Russel, JA, White, JP, Moran, NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10: 217–228PubMedCrossRefGoogle Scholar
  44. 44.
    Sasaki-Fukatsu, K, Koga, R, Nikoh, N, Yoshizawa, K, Kasai, S, Mihara, M, Kobayashi, M, Tomita, T, Fukatsu, T (2006) Symbiotic bacteria associated with stomach discs of human lice. Appl Environ Microbiol 72: 7349–7352PubMedCrossRefGoogle Scholar
  45. 45.
    Schröder, D, Deppisch, H, Obermeyer, M, Krone, G, Stackebrandt, E, Holldobler, B, Goebel, W, Gross, R (1996) Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol 21: 479–489PubMedCrossRefGoogle Scholar
  46. 46.
    Spaulding, AW, von Dohlen, CD (2001) Psyllids endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol Biol 10: 57–67PubMedCrossRefGoogle Scholar
  47. 47.
    Syvänen, AC, Amiri, H, Jamal, A, Andersson, SGE, Kurland, GC (1996) A chimeric disposition of the elongation factor genes in Rickettsia prowazeki. J Bacteriol 178: 6192–6199PubMedGoogle Scholar
  48. 48.
    Swofford, DL (1998) PAUP 4.0—phylogenetic analysis using parsimony. Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  49. 49.
    Thao, ML, Moran, NA, Abbot, P, Brennan, EB, Burckhardt, DH, Baumann, P (2000) Cospeciation of psyllids and their primary procaryotic endosymbionts. Appl Environ Microbiol 66: 2898–2905PubMedCrossRefGoogle Scholar
  50. 50.
    Thompson, JD, Higgins, DG, Gibson, TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680PubMedCrossRefGoogle Scholar
  51. 51.
    Volf, P (1991) Postembryonal development of Mycetocytes and symbionts of the spiny rat louse Polyplax spinulosa. J Invertebr Pathol 58: 143–146CrossRefGoogle Scholar
  52. 52.
    Wernegreen, JJ, Moran, NA (1999) Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. Mol Biol Evol 16: 83–97PubMedGoogle Scholar
  53. 53.
    Wernergreen, JJ, Funk, DJ (2004) Mutation exposed: a natural explanation for extreme base composition of endosymbiont genome. J Mol Evol 59: 849–858CrossRefGoogle Scholar
  54. 54.
    Żelazowska, M, Biliński, SM (1999) Distribution and transmission of endosymbiotic mocroorgnisms in the oocytes of the pig louse, Haematopinus suis (L.) (Insecta: Phthiraptera). Protoplasma 209: 207–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Faculty of Biological SciencesČeské BudějoviceCzech Republic
  2. 2.Institute of Parasitology AS CRČeské BudějoviceCzech Republic

Personalised recommendations