Microbial Ecology

, Volume 53, Issue 3, pp 471–474 | Cite as

Pseudomonas fluorescens SBW25 Biofilm and Planktonic Cells Have Differentiable Raman Spectral Profiles

  • Wei E. Huang
  • Susanne Ude
  • Andrew J. Spiers


Biofilms, and other bacterial aggregations, are of significance in both environmental microbiology and in plant and human pathogenesis. Comparative single-cell Raman spectral analysis can differentiate between planktonic bacteria and those recovered from biofilms and appears to offer a new means by which to investigate bacterial cell physiology, metabolic status, and stress under different environmental conditions.


Pseudomonas Fluorescens Planktonic Cell Planktonic Sample Planktonic Bacterium Wellcome Trust Sanger Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Andrew Knowles and Simon FitzGerald from HORIBA Jobin-Yvon Ltd. UK for supplying the Raman Confocal Microscope.


  1. 1.
    Costerton, JW, Lewandowski, Z, Caldwell, DE, Korber, DR, Lappin-Scott, HM (1995) Microbial biofilms. Ann Rev Microbiol 49: 711–745CrossRefGoogle Scholar
  2. 2.
    Fux, CA, Costerton, JW, Stewart, PS, Stoodly, P (2005) Survival strategies of infectious biofilms. Trends in Microbiol 13: 34–40CrossRefGoogle Scholar
  3. 3.
    Ghigo, J-M (2003) Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res Microbiol 154: 1–8PubMedCrossRefGoogle Scholar
  4. 4.
    Huang, WE, Bailey, MJ, Thompson, IP, Whiteley, AS, Spiers, AJ (2006) Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history. Microb Ecol (in press)Google Scholar
  5. 5.
    Huang, WE, Griffiths, RI, Thompson, IP, Bailey, MJ, Whiteley, AS (2004) Raman microscopic analysis of single microbial cells. Anal Chem 76: 4452–4458PubMedCrossRefGoogle Scholar
  6. 6.
    Jarvis, RM, Goodacre, R (2005) Genetic algorithm optimisation for pre-processing and variable selection of spectroscopic data. Bioinformatics 21: 860–868PubMedCrossRefGoogle Scholar
  7. 7.
    Lazazzera, BA (2005) Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol 8: 222–227PubMedCrossRefGoogle Scholar
  8. 8.
    Maquelin, K, Kirschner, C, Choo-Smith, LP, van den Braak, N, Endtz, HPh, Naumann, D, Puppels, GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51: 255–271PubMedCrossRefGoogle Scholar
  9. 9.
    Spiers, AJ, Kahn, SG, Travisano, M, Bohannon, J, Rainey, PB (2001) Adaptive divergence in Pseudomonas fluorescens. 1. Determinants of Wrinkly Spreader fitness and the cause of an evolutionary transition. Genetics 161: 33–46Google Scholar
  10. 10.
    Spiers, AJ, Bohannon, J, Gehrig, S, Rainey, PB (2003) Colonisation of the air–liquid interface by the Pseudomonas fluorescens SBW25 Wrinkly spreader requires an acetylated form of cellulose. Molec Microbiol 50: 15–27CrossRefGoogle Scholar
  11. 11.
    Spiers, AJ, Rainey, PB (2005) The Pseudomonas fluorescens SBW25 Wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology 151: 2829–2839PubMedCrossRefGoogle Scholar
  12. 12.
    Ude, S, Bailey, MJ, Huang, WE, Spiers, AJ (2006) The environmental plasmid pQBR103 alters the single-cell Raman spectral profile of Pseudomonas fluorescens SBW25. Microb Ecol (in press)Google Scholar
  13. 13.
    Wimpenny, J, Manz, W, Szewzyk, U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24: 661–671PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Wei E. Huang
    • 1
    • 2
  • Susanne Ude
    • 1
    • 2
  • Andrew J. Spiers
    • 1
    • 2
  1. 1.Molecular Microbiology Ecology and Environmental Biotechnology SectionsCEH-OxfordOxfordUK
  2. 2.Department of Plant SciencesUniversity of OxfordOxfordUK

Personalised recommendations