Advertisement

Microbial Ecology

, Volume 53, Issue 4, pp 683–699 | Cite as

Species-Specific Bacterial Communities in the Phycosphere of Microalgae?

  • Melanie SappEmail author
  • Anne S. Schwaderer
  • Karen H. Wiltshire
  • Hans-Georg Hoppe
  • Gunnar Gerdts
  • Antje Wichels
Article

Abstract

Specific associations of bacteria with phytoplankton have recently been reported in the literature. In our study, we analyzed bacterial communities of microalgal cultures related to algal growth phases. Seven freshly isolated key diatom and dinoflagellate species from Helgoland Roads, North Sea, were investigated. The community composition of associated bacteria as well as the cell numbers, the photosynthetic efficiency of the algae, and the depletion of inorganic nutrients in the medium were recorded over a period of 8 weeks in batch cultures. Diversity and succession of bacterial communities was analyzed by ribosomal intergenic spacer analysis. Phylogenetic analysis of bacterial populations was performed by denaturing gradient gel electrophoresis of 16S rRNA genes followed by DNA sequence analysis. Members of Alphaproteobacteria and Gammaproteobacteria and the Flavobacteria–Sphingobacteria group within the Bacteroidetes phylum predominated in the cultures. Differences in free-living and attached bacterial populations were observed between the phylogenetic groups. Shifts in the bacterial communities could not be correlated to changes of nutrient levels or algal growth phases. Regarding our results, it should not be generalized that the compositions of the bacterial communities are strictly species specific for microalgae. The importance of factors like the composition of exudates is apparent.

Keywords

Bacterial Community Microalgae Dinoflagellate Gammaproteobacteria Alphaproteobacteria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful for the initial isolation of microalgae by M. Hoppenrath. We would like to thank K.-W. Klings, H. Döpke, and the crew members of the research vessel Aade from the Biologische Anstalt Helgoland for their assistance. This work is part of the Helgoland Foodweb program in the Coastal Diversity program of the Alfred Wegener Institute.

References

  1. 1.
    Azam, F (1998) Oceanography: microbial control of oceanic carbon flux: the plot thickens. Science 280: 694–696CrossRefGoogle Scholar
  2. 2.
    Bell, W, Mitchell, R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143: 265–277CrossRefGoogle Scholar
  3. 3.
    Bell, WH, Lang, JM, Mitchell, R (1974) Selective stimulation of marine bacteria by algal extracellular products. Limnol Oceanogr 19: 833–839CrossRefGoogle Scholar
  4. 4.
    Bidle, KD, Azam, F (2001) Bacterial control of silicon regeneration from diatom detritus: significance of bacterial ectohydrolases and species identity. Limnol Oceanogr 46: 1606–1623CrossRefGoogle Scholar
  5. 5.
    Bidle, KD, Manganelli, M, Azam, F (2002) Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science 298: 1980–1984PubMedCrossRefGoogle Scholar
  6. 6.
    Bowman, JP, Nichols, DS (2002) Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int J Syst Evol Microbiol 52: 1533–1541PubMedCrossRefGoogle Scholar
  7. 7.
    Brown, MV, Bowman, JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35: 267–275PubMedCrossRefGoogle Scholar
  8. 8.
    Buchan, A, Collier, LS, Neidle, E, Moran, MA (2000) Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 66: 4662–4672PubMedCrossRefGoogle Scholar
  9. 9.
    Clarke, KR, Warwick, RM (2001) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. PRIMER-E, Plymouth, UKGoogle Scholar
  10. 10.
    Cole, JR, Chai, B, Marsh, TL, Farris, RJ, Wang, Q, Kulam, S, Chandra, S, McGarrell, D, Schmidt, T, Garrity, G, Tiedje, J (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31: 442–443PubMedCrossRefGoogle Scholar
  11. 11.
    Cottrell, MT, Kirchman, DL (2000) Natural assemblages of marine proteobacteria and members of the CytophagaFlavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66: 1692–1697PubMedCrossRefGoogle Scholar
  12. 12.
    Croft, MT, Lawrence, AD, Raux-Deery, E, Warren, MJ, Smith, AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438: 90–93PubMedCrossRefGoogle Scholar
  13. 13.
    Dang, H, Lovell, CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66: 467–475PubMedCrossRefGoogle Scholar
  14. 14.
    Daste, P, Neuville, D, Victor-Baptiste, B (1983) A simple procedure for obtaining clonal isolation of diatoms. Br Phycol J 18: 1–3Google Scholar
  15. 15.
    DeLong, EF, Franks, DG, Alldredge, AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38: 924–934CrossRefGoogle Scholar
  16. 16.
    Durako, MJ, Kunzelmann, JI (2002) Photosynthetic characteristic of Thalassia testudinum measured in situ by pulse-amplitude modulated (PAM) fluorometry: methodological and scale-based considerations. Aquat Bot 73: 173–185CrossRefGoogle Scholar
  17. 17.
    Eilers, H, Pernthaler, J, Glöckner, FO, Amann, R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66: 3044–3051PubMedCrossRefGoogle Scholar
  18. 18.
    Eilers, H, Pernthaler, J, Peplies, J, Glöckner, FO, Gerdts, G, Amann, R (2001) Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67: 5134–5142PubMedCrossRefGoogle Scholar
  19. 19.
    Fandino, LB, Riemann, L, Steward, GF, Long, RA, Azam, F (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol 23: 119–130Google Scholar
  20. 20.
    Felsenstein, J (1993) PHYLIP (phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, WAGoogle Scholar
  21. 21.
    Ferguson, RL, Buckley, EN, Palumbo, AV (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47: 49–55PubMedGoogle Scholar
  22. 22.
    Fukami, K, Nishijima, T, Ishida, Y (1997) Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia 358: 185–191CrossRefGoogle Scholar
  23. 23.
    Gaston, KJ (1996) Biodiversity: a biology of numbers and difference. Blackwell Science, OxfordGoogle Scholar
  24. 24.
    Genty, B, Briantais, J, Baker, N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92Google Scholar
  25. 25.
    Gillanders, BM (2001) Trace metals in four structures of fish and their use for estimates of stock structure. Fish Bull 99: 410–419Google Scholar
  26. 26.
    Gonzáles, J, Moran, MA (1997) Numerical Dominance of a group of marine bacteria in the A-subclass of the class proteobacteria in coastal seawater. Appl Environ Microbiol 63: 4237–4242Google Scholar
  27. 27.
    Grasshoff, K, Johannsen, H (1974) A critical review of the method by Bensch and Mangelsdorf for the colorimetric determination of ammonia in seawater. J Cons Int Explor Mer 36: 90–92Google Scholar
  28. 28.
    Grasshoff, K, Kremling, K, Ehrhardt, M, Anderson, LG (1999) Methods of Seawater Analysis. Wiley-VCH, New YorkGoogle Scholar
  29. 29.
    Green, DH, Llewellyn, LE, Negri, AP, Blackburn, SI, Bolch, CJS (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47: 345–357CrossRefPubMedGoogle Scholar
  30. 30.
    Grossart, HP (1999) Interactions between marine bacteria and axenic diatoms (Cylindrotheca fusiformis, Nitzschia laevis, and Thalassiosira weissflogii). Aquat Microb Ecol 19: 1–11Google Scholar
  31. 31.
    Grossart, HP, Levold, F, Allgaier, M, Simon, M, Brinkhoff, T (2005) Marine diatom species harbour distinct bacterial communities. Environ Microbiol 7: 860–873PubMedCrossRefGoogle Scholar
  32. 32.
    Grossart, HP, Kiørboe, T, Tang, KW, Allgaier, M, Yam, EM, Ploug, H (2006) Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics. Aquat Microb Ecol 42: 19–26Google Scholar
  33. 33.
    Guillard, RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith, WL (Ed.) Culture of Marine Invertebrate Animals, Plenum Press, New YorkGoogle Scholar
  34. 34.
    Hold, GL, Smith, EA, Rappé, MS, Maas, EW, Moore, ERB, Stroempl, C, Stephen, JR, Prosser, JI, Birkbeck, TH, Gallacher, S (2001) Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiol Ecol 37: 161–173CrossRefGoogle Scholar
  35. 35.
    Jasti, S, Sieracki, ME, Poulton, NJ, Giewat, MW, Rooney-Varga, JN (2005) Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol 71: 3483–3494PubMedCrossRefGoogle Scholar
  36. 36.
    Juneau, P, Lawrence, JE, Suttle, CA, Harrison, PJ (2003) Effects of viral infection on photosynthetic processes in the bloom-forming alga Heterosigma akashiwo. Aquat Microb Ecol 31: 9–17Google Scholar
  37. 37.
    Kogure, K, Simidu, U, Taga, N (1982) Bacterial attachment to phytoplankton in sea water. J Exp Mar Biol Ecol 56: 197–204CrossRefGoogle Scholar
  38. 38.
    Lancelot, C (1983) Factors affecting phytoplankton extracellular release in the Southern Bight of the North Sea. Mar Ecol Prog Ser 12: 115–121Google Scholar
  39. 39.
    Lovejoy, C, Bowman, JP, Hallegraeff, GM (1998) Algicidal effects of a novel marine Pseudoalteromonas isolate (Class Proteobacteria, Gamma Subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl Environ Microbiol 64: 2806–2813PubMedGoogle Scholar
  40. 40.
    Ludwig, W, Strunk, O, Westram, R, Richter, L, Meier, H, Yadhukumar, Buchner, A, Lai, T, Steppi, S, Jobb, G, Förster, W, Brettske, I, Gerber, S, Ginhart, AW, Gross, O, Grumann, S, Hermann, S, Jost, R, König, A, Liss, T, Lüßmann, R, May, M, Nonhoff, B, Reichel, B, Strehlow, R, Stamatakis, A, Stuckmann, N, Vilbig, A, Lenke, M, Ludwig, T, Bode, A, Schleifer, KH (2004) A software environment for sequence data. Nucleic Acids Res 32: 1363–1371PubMedCrossRefGoogle Scholar
  41. 41.
    Lund, J, Kipling, C, Le Cren, E (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170CrossRefGoogle Scholar
  42. 42.
    Muylaert, K, Van der Gucht, K, Vloemans, N, De Meester, L, Gillis, M, Vyverman, W (2002) Relationship between bacterial community composition and bottom–up versus top–down variables in four eutrophic shallow lakes. Appl Environ Microbiol 68: 4740–4750PubMedCrossRefGoogle Scholar
  43. 43.
    Muyzer, G, Brinkhoff, T, Nübel, U, Santegoeds, C, Schäfer, H, Wawer, C (2004) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Kowalchuk, GA, de Bruijn, FJ, Head, IM, Akkermans, ADL, van Elsas, JD (Eds.) Molecular Microbial Ecology Manual, vol. 1, Kluwer Academic Publishers, Dordrecht, pp 743–769Google Scholar
  44. 44.
    Muyzer, G, Smalla, K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127–141PubMedCrossRefGoogle Scholar
  45. 45.
    Myklestad, SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165: 155–164CrossRefGoogle Scholar
  46. 46.
    Naviner, M, Bergé, J-P, Durand, P, Le Bris, H (1999) Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 174: 15–24CrossRefGoogle Scholar
  47. 47.
    Orsini, L, Sarno, D, Procaccini, G, Poletti, R, Dahlmann, J, Montresor, M (2002) Toxic Pseudo-nitzschia multistrata (Bacillariophyceae) from the Gulf of Naples: morphology, toxin analysis and phylogenetic relationships with other Pseudo-nitzschia species. Eur J Phycol 37: 247–257CrossRefGoogle Scholar
  48. 48.
    Pinhassi, J, Berman, T (2003) Differential growth response of colony-forming alpha- and gamma-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the Eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol 69: 199–211PubMedCrossRefGoogle Scholar
  49. 49.
    Prokiç, I, Brümmer, F, Brigge, T, Görtz, HD, Gerdts, G, Schütt, C, Elbrächter, M, Müller, WEG (1998) Bacteria of the genus Roseobacter associated with the toxic dinoflagellate Prorocentrum lima. Protist 149: 347–357CrossRefGoogle Scholar
  50. 50.
    Ranjard, L, Brothier, E, Nazaret, S (2000) Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl Environ Microbiol 66: 5334–5339PubMedCrossRefGoogle Scholar
  51. 51.
    Ranjard, L, Poly, F, Combrisson, J, Richaume, A, Gourbiere, F, Thioulouse, J, Nazaret, S (2000) Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb Ecol 39: 263–272PubMedGoogle Scholar
  52. 52.
    Riemann, L, Steward, GF, Azam, F (2000) Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66: 578–587PubMedCrossRefGoogle Scholar
  53. 53.
    Romanenko, LA, Zhukova, NV, Rohde, M, Lysenko, AM, Mikhailov, VV, Stackebrandt, E (2003) Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int J Syst Evol Microbiol 53: 125–131PubMedCrossRefGoogle Scholar
  54. 54.
    Rooney-Varga, JN, Giewat, MW, Savin, MC, Sood, S, LeGresley, M, Martin, JL (2005) Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb Ecol 49: 163–175PubMedCrossRefGoogle Scholar
  55. 55.
    Rynearson, TA, Armbrust, EV (2004) Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bracillariophyceae). J Phycol 40: 34–43Google Scholar
  56. 56.
    Sambrook, J, Fritsch, EF, Maniatis, T (1989) Molecular cloning: a laboratory manual. 1–3. Cold Spring Harbor, New YorkGoogle Scholar
  57. 57.
    Savin, MC, Martin, JL, LeGresley, M, Giewat, M, Rooney-Varga, J (2004) Plankton diversity in the Bay of Fundy as measured by morphological and molecular methods. Microb Ecol 48: 51–65PubMedCrossRefGoogle Scholar
  58. 58.
    Schäfer, H, Abbas, B, Witte, H, Muyzer, G (2002) Genetic diversity of “satellite” bacteria present in cultures of marine diatoms. FEMS Microbiol Ecol 42: 25–35PubMedGoogle Scholar
  59. 59.
    Schäfer, H, Servais, P, Muyzer, G (2000) Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch Mibrobiol 173: 138–145Google Scholar
  60. 60.
    Seibold, A, Wichels, A, Schuett, C (2001) Diversity of endocytic bacteria in the dinoflagellate Noctiluca scintillans. Aquat Microb Ecol 25: 229–235Google Scholar
  61. 61.
    Sigler, WV, Miniaci, C, Zeyer, J (2004) Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J Microbiol Methods 57: 17–22PubMedCrossRefGoogle Scholar
  62. 62.
    Stewart, JE, Marks, LJ, Wood, CR, Risser, SM, Gray, S (1997) Symbiotic relations between bacteria and the domoic acid producing diatom Pseudonitzschia multiseries and the capacity of these bacteria for gluconic acid/gluconolactone formation. Aquat Microb Ecol 12: 211–221Google Scholar
  63. 63.
    Vaqué, D, Duarte, CM, Marrasé, C (1990) Influence of algal population dynamics on phytoplankton colonization by bacteria: evidence from two diatom species. Mar Ecol Prog Ser 65: 201–203Google Scholar
  64. 64.
    Walz, HG (1999) PAM-CONTROL Universal Control Unit For Ultrasensitive Chlorophyll Fluorescence Measurements. Handbook of OperationGoogle Scholar
  65. 65.
    Wichels, A, Hummert, C, Elbrächter, M, Luckas, B, Schütt, C, Gerdts, G (2004) Bacterial diversity in toxic Alexandrium tamarense blooms off the Orkney Isles and the Firth of Forth. Helgol Mar Res 58: 93–103CrossRefGoogle Scholar
  66. 66.
    Wiltshire, KH, Dürselen, CD (2004) Revision and quality analyses of the Helgoland Reede long-term phytoplankton data archive. Helgol Mar Res 58: 252–268CrossRefGoogle Scholar
  67. 67.
    Yannarell, AC, Kent, AD, Lauster, GH, Kratz, TK, Triplett, EW (2005) Temporal patterns in bacterial communities in three temperate lakes of different trophic status. Microb Ecol 46: 391–405CrossRefGoogle Scholar
  68. 68.
    Yannarell, AC, Triplett, EW (2004) Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Appl Environ Microbiol 70: 214–223PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Melanie Sapp
    • 1
    Email author
  • Anne S. Schwaderer
    • 1
  • Karen H. Wiltshire
    • 1
  • Hans-Georg Hoppe
    • 2
  • Gunnar Gerdts
    • 1
  • Antje Wichels
    • 1
  1. 1.Alfred Wegener Institute Foundation for Polar and Marine Research, Biologische Anstalt HelgolandHelgolandGermany
  2. 2.IFM-GEOMAR Leibniz-Institute of Marine Sciences, Marine MicrobiologyKielGermany

Personalised recommendations