Microbial Ecology

, Volume 53, Issue 4, pp 562–570 | Cite as

MiCA: A Web-Based Tool for the Analysis of Microbial Communities Based on Terminal-Restriction Fragment Length Polymorphisms of 16S and 18S rRNA Genes

  • Conrad Shyu
  • Terry Soule
  • Stephen J. Bent
  • James A. Foster
  • Larry J. Forney
Article

Abstract

A web-based resource, Microbial Community Analysis (MiCA), has been developed to facilitate studies on microbial community ecology that use analyses of terminal-restriction fragment length polymorphisms (T-RFLP) of 16S and 18S rRNA genes. MiCA provides an intuitive web interface to access two specialized programs and a specially formatted database of 16S ribosomal RNA sequences. The first program performs virtual polymerase chain reaction (PCR) amplification of rRNA genes and restriction of the amplicons using primer sequences and restriction enzymes chosen by the user. This program, in silico PCR and Restriction (ISPaR), uses a binary encoding of DNA sequences to rapidly scan large numbers of sequences in databases searching for primer annealing and restriction sites while permitting the user to specify the number of mismatches in primer sequences. ISPaR supports multiple digests with up to three enzymes. The number of base pairs between the 5′ and 3′ primers and the proximal restriction sites can be reported, printed, or exported in various formats. The second program, APLAUS, infers a plausible community structure(s) based on T-RFLP data supplied by a user. APLAUS estimates the relative abundances of populations and reports a listing of phylotypes that are consistent with the empirical data. MiCA is accessible at http://mica.ibest.uidaho.edu/.

References

  1. 1.
    Borneman, J, Triplett, EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63: 2647–2653PubMedGoogle Scholar
  2. 2.
    Buckley, DH, Schmidt, TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42: 11–21PubMedGoogle Scholar
  3. 3.
    Chandler, DP, Fredrickson, JK, Brockman, FJ (1997) Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol 6: 475–483PubMedCrossRefGoogle Scholar
  4. 4.
    Cole, JR, Chai, B, Marsh, TL, Farris, RJ, Wang, Q, Kulam, SA, Chandra, S, McGarrell, DM, Schmidt, TM, Garrity, GM, Tiedje, JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31: 442–443PubMedCrossRefGoogle Scholar
  5. 5.
    DeLong, EF, Pace, NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50: 470–478PubMedCrossRefGoogle Scholar
  6. 6.
    Dunbar, J, White, S, Forney, LJ (1997) Genetic diversity through the looking glass: effect of enrichment bias. Appl Environ Microbiol 63: 1326–1331PubMedGoogle Scholar
  7. 7.
    Dunbar, J, Barns, SM, Ticknor, LO, Kuske, CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68: 3035–3045PubMedCrossRefGoogle Scholar
  8. 8.
    Ercolini, D, Moschetti, G, Blaiotta, G, Coppola, S (2001) The potential of a polyphasic PCR-DGGE approach in evaluating microbial diversity of natural whey cultures for water-buffalo mozzarella cheese production: bias of culture-dependent and culture-independent analysis. Syst Appl Microbiol 24: 610–617PubMedCrossRefGoogle Scholar
  9. 9.
    Farrelly, V, Rainey, FA, Stackebrandt, E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61: 2798–2801PubMedGoogle Scholar
  10. 10.
    Frostegård, Å, Courtois, S, Ramisse, V, Clerc, S, Bernillon, D, Le Gall, F, Jeannin, P, Nesme, X, Simonet, P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65: 5409–5420PubMedGoogle Scholar
  11. 11.
    Hillebrand, H, Watermann, F, Karez, R, Berninger, UG (2001) Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126:114–124CrossRefGoogle Scholar
  12. 12.
    Kent, AD, Smith, DJ, Benson, BJ, Triplett, EW (2003) Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol 69: 6768–6776PubMedCrossRefGoogle Scholar
  13. 13.
    Kousuke, I, Fukui, M (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl Environ Microbiol 67: 3753–3755CrossRefGoogle Scholar
  14. 14.
    Kowalchuk, GA, Stienstra, AW, Heilig, GHJ, Stephen, JR, Woldendorp, JW (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2: 99–110PubMedCrossRefGoogle Scholar
  15. 15.
    Lexa, M, Horak, J, Brzobohaty, B (2000) Virtual PCR. Bioinformatics 17: 192–193CrossRefGoogle Scholar
  16. 16.
    Liu, WT, Marsh, TL, Cheng, H, Forney, LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63: 4516–4522PubMedGoogle Scholar
  17. 17.
    Marsh, TL, Saxman, P, Cole, J, Tiedje, J (2000) Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol 66: 3616–3620PubMedCrossRefGoogle Scholar
  18. 18.
    Michel Jr, FC, Sciarini, SM (2004) Fragsort 4.0, a tool for multiple restriction digestion T-RFLP analysis based on in silico amplification and digestion of 16S ribosomal RNA gene sequences. In: Proceedings of the 10th International Symposium on Microbial Ecology (ISME-10), Poster Session P03CGoogle Scholar
  19. 19.
    Muyzer, G, de Waal, EC, Uitterlinden, AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700PubMedGoogle Scholar
  20. 20.
    Polz, MF, Cavanaugh, CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64: 3724–3730PubMedGoogle Scholar
  21. 21.
    Reysenbach, A-L, Giver, LJ, Wickham, GS, Pace, NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58: 3417–3418PubMedGoogle Scholar
  22. 22.
    Schuler, GD (1997) Sequence mapping by electronic PCR. Genomic Methods 7: 541–550Google Scholar
  23. 23.
    Smith, Z, McCaig, AE, Stephen, JR, Embley, TM, Prosser, JI (2001) Species diversity of uncultured and cultured populations of soil and marine ammonia oxidizing bacteria. Microb Ecol 42: 228–237PubMedCrossRefGoogle Scholar
  24. 24.
    Suzuki, M, Giovannoni, SJ (1996) Bias caused by template annealing in the amplification mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62: 625–630PubMedGoogle Scholar
  25. 25.
    Tiedje, JM, Asuming-Brempong, S. Nusslein, K. Marsh, TL, Flynn, SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13: 109–112CrossRefGoogle Scholar
  26. 26.
    Ward, BB (2002) How many species of prokaryotes are there? Proc Natl Acad Sci USA 99: 10234–10236PubMedCrossRefGoogle Scholar
  27. 27.
    Ward, DM, Ferris, MJ, Nold, SC, Bateson, MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62: 1353–1370PubMedGoogle Scholar
  28. 28.
    Wise, MJ, Osborn, AM (2001) TRUFFLER: programs to study microbial community composition and flux from fluorescent DNA fingerprinting data. Proceedings of 2nd IEEE International Symposium on Bioinformatics and Bioengineering (BIBE '01), p 129Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Conrad Shyu
    • 1
  • Terry Soule
    • 1
  • Stephen J. Bent
    • 2
  • James A. Foster
    • 2
  • Larry J. Forney
    • 2
  1. 1.Department of Computer ScienceUniversity of IdahoMoscowUSA
  2. 2.Department of Biological Sciences, Life Sciences South, Rm. 252University of IdahoMoscowUSA

Personalised recommendations