Microbial Ecology

, Volume 50, Issue 4, pp 589–601

Bacterial Community Succession in Natural River Biofilm Assemblages

  • Emilie Lyautey
  • Colin R. Jackson
  • Jérôme Cayrou
  • Jean-Luc Rols
  • Frédéric Garabétian
Article

Abstract

Temporal bacterial community changes in river biofilms were studied using 16S rRNA gene-based polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) followed by sequence analysis. Naturally occurring biofilms were sampled in 2001 during an undisturbed 7-month low-water period in the River Garonne (SW France). During the sampling period epilithic biomass exhibited a particular pattern: two 3-month periods of accumulation that resulted in two peaks in summer and fall, each at about 25 g ash-free dry mass per square meter. Bacterial community DGGE profiles differed between the summer and fall biomass peaks and shared only 30% common operational taxonomic units (OTUs), suggesting the influence of seasonal factors on these communities. During the second biomass accrual phase, bacterial richness and the appearance of new OTUs fitted a conceptual model of bacterial biofilm succession. During succession, five OTUs (corresponding to Dechloromonas sp., Nitrospira sp., and three different Spirosoma spp.) exhibited particular patterns and were present only during clearly defined successional stages, suggesting differences in life-history strategies for epilithic bacteria. Co-inertia analysis of DGGE banding patterns and physical–chemical data showed a significant relationship between community structure and environmental conditions suggesting that bacterial communities were mainly influenced by seasonal changes (temperature, light) and hydrodynamic stability. Within the periods of stability, analysis of environmental variables and community patterns showed the dominant influence of time and maturation on bacterial community structure. Thus, succession in these naturally occurring epilithic biofilm assemblages appears to occur through a combination of allogenic (seasonal) and autogenic changes.

References

  1. 1.
    Amann, RI, Ludwig, W, Schleifer, K-H 1995Phylogenetic identification and in situ detection of individual microbial cells without cultivationMicrobiol Rev59143169PubMedGoogle Scholar
  2. 2.
    Améziane, T, Garabétian, F, Dalger, D, Sauvage, S, Dauta, A, Capblancq, J 2002Epilithic biomass in a large gravel-bed river (the Garonne, France): a manifestation of eutrophication?River Res Appl18343354Google Scholar
  3. 3.
    APHA1992Standard methods for the examination of waterand wastewaterAmerican Public Health AssociationWashington, DCGoogle Scholar
  4. 4.
    Battin, TJ, Kaplan, LA, Newbold, JD, Hansen, CME 2003Contributions of microbial biofilms to ecosystem processes in stream mesocosmsNature426439442PubMedCrossRefGoogle Scholar
  5. 5.
    Biggs, BJF 1996

    Patterns in benthic algae of streams

    Stevenson, RJBothwell, MLLowe, RL eds. Algal ecology—freshwater benthic ecosystemsAcademic PressSan Diego3156
    Google Scholar
  6. 6.
    Biggs, BJF, Stevenson, RJ, Lowe, RL 1998A habitat matrix conceptual model for stream periphytonArch Hydrobiol1432156Google Scholar
  7. 7.
    Biggs, BJF, Tuchman, NC, Lowe, RL, Stevenson, RL 1999Resource stress alters hydrological disturbance effects in a stream periphyton communityOikos895108Google Scholar
  8. 8.
    Bott, TL, Brock, TD 1970Growth and metabolism of periphytic bacteria: methodologyLimnol Oceanogr15333342CrossRefGoogle Scholar
  9. 9.
    Boulos, L, Prévost, M, Barbeau, B, Coallier, J, Desjardins, R 1999LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking waterJ Microbiol Methods377786PubMedCrossRefGoogle Scholar
  10. 10.
    Brümmer, IHM, Fehr, W, Wagner-Döbler, I 2000Biofilm community structure in polluted rivers: abundance of dominant phylogenetic groups over a complete annual cycleAppl Environ Microbiol6630783082PubMedGoogle Scholar
  11. 11.
    Brümmer, IHM, Felske, A, Wagner-Döbler, I 2003Diversity and seasonal variability of β-Proteobacteria in biofilms of polluted rivers: analysis by temperature gradient gel electrophoresis and cloningAppl Environ Microbiol6944634473PubMedGoogle Scholar
  12. 12.
    Brümmer, IHM, Felske, ADM, Wagner-Döbler, I 2004Diversity and seasonal changes of uncultured Planctomycetales in river biofilmsAppl Environ Microbiol7050945101PubMedGoogle Scholar
  13. 13.
    Chénier, MR, Beaumier, D, Roy, R, Driscoll, BT, Lawrence, JR, Greer, CW 2003Impact of seasonal variations and nutrient inputs on nitrogen cycling and degradation of hexadecane by replicated river biofilmsAppl Environ Microbiol6951705177PubMedGoogle Scholar
  14. 14.
    Costerton, WJ 2000

    Phenotypic plasticity in bacterial biofilms as it affects issues of viability and culturability

    Colwell, RRGrimes, DJ eds. Nonculturable Microorganisms in the EnvironmentChapman & HallNew York131145
    Google Scholar
  15. 15.
    Dolédec, S, Chessel, D 1994Co-inertia analysis: an alternative method for studying species–environment relationshipsFreshwater Biol3112771294Google Scholar
  16. 16.
    Elliot, JA, Irish, AE, Reynolds, CS 2000The diversity and succession of phytoplankton communities in disturbance-free environments, using the model PROTECHArch Hydrobiol149251258Google Scholar
  17. 17.
    Fisher, SG 1990Recovery processes in lotic ecosystems: limits of successional theoryEnviron Manage14725736Google Scholar
  18. 18.
    Fromin, N, Hamelin, J, Tarnawski, S, Roesti, D, Jourdain-Miserez, K, Forestier, N, Teyssier-Cuvelle, S, Gillet, F, Aragno, P, Rossi, P 2002Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patternsEnviron Microbiol4634643PubMedCrossRefGoogle Scholar
  19. 19.
    Gosselain, V, Viroux, L, Descy, JP 1998Can a community of small-bodied grazers control phytoplankton in riverFreshwater Biol39924CrossRefGoogle Scholar
  20. 20.
    Grime, JP 1977Plant strategies and vegetation processesJohn Wiley & SonsChichesterGoogle Scholar
  21. 21.
    Holt, JG, Krieg, NR, Sneath, PHA, Staley, J, Williams, ST 1994Bergey's Manual of Determinative BacteriologyWilliams & WilkinsBaltimoreGoogle Scholar
  22. 22.
    Jaccard, P 1908Nouvelles recherches sur la distribution floraleBull Soc Vaud Sci Nat44223270Google Scholar
  23. 23.
    Jackson, CR 2003Changes in community properties during microbial successionOikos101444448CrossRefGoogle Scholar
  24. 24.
    Jackson, CR, Churchill, PF, Roden, EE 2001Successional changes in bacterial assemblage structure during epilithic biofilm developmentEcology82555566Google Scholar
  25. 25.
    Jefferson, KK 2004What drives bacteria to produce a biofilmFEMS Microbiol Lett236163173PubMedCrossRefGoogle Scholar
  26. 26.
    Kropf, S, Heuer, H, Grüning, M, Smalla, K 2004Significance test for comparing complex microbial community fingerprints using pairwise similarity measuresJ Microbiol Methods57187195PubMedCrossRefGoogle Scholar
  27. 27.
    Lawrence, JR, Caldwell, DE 1987Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironmentsMicrob Ecol141527Google Scholar
  28. 28.
    Lawrence, JR, Scharf, B, Packroff, G, Neu, TR 2002Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and compositionMicrob Ecol43199207Google Scholar
  29. 29.
    Leff, LG, McArthur, JV, Meyer, JL, Shimkets, LJ 1994Effects of macroinvertebrates on detachment of bacteria from biofilms in stream microcosmsJ N Am Benthol Soc13234243Google Scholar
  30. 30.
    Lemke, MJ, Leff, LG 1999Bacterial populations in an anthropogenically disturbed stream: comparison of different seasonsMicrob Ecol38234243PubMedCrossRefGoogle Scholar
  31. 31.
    Loo, CY 2003

    Oral streptococcal genes that encode biofilm formation

    Wilson, MDevine, D eds. Medical Implications of BiofilmsCambridge University PressCambridge212227
    Google Scholar
  32. 32.
    Lorenzen, J, Larsen, LH, Kjaer, T, Revsbech, NP 1998Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatom-inhabited freshwater sedimentAppl Environ Microbiol6432643269PubMedGoogle Scholar
  33. 33.
    Ludwig, W, Strunk, O, Westram, R, Richter, L, Meier, H, Yadhukumar, , Buchner, A, Lai, T, Steppi, S, Jobb, G, Förster, I, Brettske, I, Gerber, S, Ginhart, AW, Gross, O, Grumann, S, Hermann, S, Jost, R, König, A, Liss, T, Lüßmann, R, May, M, Nonhoff, B, Reichel, B, Strehlow, R, Stamatakis, A, Stuckmann, A, Vilbig, A, Lenke, M, Ludwig, T, Bode, A, Schleifer, K-H 2004ARB: a software environment for sequence dataNucleic Acids Res3213631371PubMedCrossRefGoogle Scholar
  34. 34.
    Lyautey, E, Lacoste, B, Ten-Hage, L, Rols, JL, Garabetian, F 2005Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretationWater Res39380388PubMedCrossRefGoogle Scholar
  35. 35.
    Lyautey, E, Teissier, S, Charcosset, JY, Rols, JL, Garabetian, F 2003Bacterial diversity of epilithic biofilm assemblages of an anthropised river section, assessed by DGGE analysis of a 16S rDNA fragmentAquat Microb Ecol33217224Google Scholar
  36. 36.
    Martiny, AC, Jorgensen, TM, Albrechtsen, H-J, Arvin, E, Molin, S 2003Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution systemAppl Environ Microbiol6968996907PubMedCrossRefGoogle Scholar
  37. 37.
    Manz, W, Wendt-Pothoff, K, Neu, TR, Szewzyk, U, Lawrence, JR 1999Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopyMicrob Ecol37225237PubMedCrossRefGoogle Scholar
  38. 38.
    Michener, CD, Sokal, RR 1957A quantitative approach to a problem in classificationEvolution11130162Google Scholar
  39. 39.
    Morgenroth, E, Wilderer, PA 2000Influence of detachment mechanisms on competition in biofilmsWater Res34417426CrossRefGoogle Scholar
  40. 40.
    Muyzer, G, Brinkhoff, T, Nübel, U, Santegoeds, C, Schafer, H, Wawer, C 1997

    Denaturing gradient gel electrophoresis (DGGE) in microbial ecology

    Akkermans, ADLElsas, JDBruijn, FJ eds. Molecular Microbial Ecology ManualKluwer AcademicsDordrecht127
    Google Scholar
  41. 41.
    Neu, TR, Lawrence, JR 1997Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopyFEMS Microbiol Ecol241125Google Scholar
  42. 42.
    Odum, ED 1969The strategy of ecosystem developmentScience164262270PubMedGoogle Scholar
  43. 43.
    Pattinson, SN, Garcia-Ruiz, R, Whitton, BA 1998Spatial and seasonal variation in denitrification in the Swale–Ouse system, a river continuumSci Total Environ211289305CrossRefGoogle Scholar
  44. 44.
    Risgaard-Petersen, N, Nicolaisen, MH, Revsbech, NP, Lomstein, BA 2004Competition between ammonia-oxidising bacteria and benthic microalgaeAppl Environ Microbiol7055285537PubMedCrossRefGoogle Scholar
  45. 45.
    Santegoeds, CM, Ferdelman, TG, Muyzer, G, Beer, D 1998Structural and functional dynamics of sulfate-reducing populations in bacterial biofilmsAppl Environ Microbiol6437313739PubMedGoogle Scholar
  46. 46.
    SCOR-UNESCO1966

    Determination of photosynthetic pigments in sea water

    Monographs on Oceanographic MethodologyUNESCOParis
    Google Scholar
  47. 47.
    Shannon, C, Weaver, W 1963The mathematical theory of communicationUrbana University of Illinois PressChicagoGoogle Scholar
  48. 48.
    Sigler, WV, Zeyer, J 2004Colony-forming analysis of bacterial community succession in deglaciated soils indicates pioneer stress-tolerant opportunistsMicrob Ecol48316323PubMedCrossRefGoogle Scholar
  49. 49.
    Simpson, EH 1949Measurement of diversityNature163688Google Scholar
  50. 50.
    Stevensen, RJ, Peterson, CG, Kirschtel, DB, King, CC, Tuchman, NC 1991Density-dependent growth, ecological strategies, and effect of nutrients and shading on benthic diatom succession in streamsJ Phycol275969Google Scholar
  51. 51.
    Teissier, S, Garabetian, F, Torre, M, Dalger, D, Labroue, L 2002Impact of an urban centre on nitrification cycle processes of epilithic biofilms during a summer low water periodRiver Res Appl182130Google Scholar
  52. 52.
    Thioulouse, J, Chessel, D, Dolédec, S, Olivier, JM 1997ADE-4: a multivariate analysis and graphical display softwareStat Comput77583CrossRefGoogle Scholar
  53. 53.
    Gemerden, H 1993Microbial mats: a joint ventureMar Geol113325Google Scholar
  54. 54.
    Waller, AS, Cow, EE, Edwards, EA 2004Perchlorate-reducing microorganisms isolated from contaminated sitesEnviron Microbiol6517527PubMedCrossRefGoogle Scholar
  55. 55.
    Watnick, P, Kolter, R 2000Biofilm, city of microbesJ Bacteriol18226752679PubMedCrossRefGoogle Scholar
  56. 56.
    Wellnitz, T, Brader, RB 2003Mechanisms influencing community composition and succession in mountain stream periphyton: interactions between scouring history, grazing and irradianceJ N Am Benthol Soc22528541Google Scholar
  57. 57.
    Zhang, H, Bruns, MA, Logen, BE 2002Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacteriumEnviron Microbiol4570576PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Emilie Lyautey
    • 1
  • Colin R. Jackson
    • 2
  • Jérôme Cayrou
    • 1
  • Jean-Luc Rols
    • 1
  • Frédéric Garabétian
    • 1
  1. 1.Laboratoire d'Ecologie des Hydrosystèmes, UMR 5177 CNRSUniversité Paul SabatierToulouse Cedex 9France
  2. 2.Department of Biological Sciences, SLU 10736Southeastern Louisiana UniversityHammondUSA

Personalised recommendations