Advertisement

Microbial Ecology

, Volume 51, Issue 1, pp 51–64 | Cite as

Epilithic and Endolithic Bacterial Communities in Limestone from a Maya Archaeological Site

  • Christopher J. McNamara
  • Thomas D. PerryIV
  • Kristen A. Bearce
  • Guillermo Hernandez-Duque
  • Ralph Mitchell
Article

Abstract

Biodeterioration of archaeological sites and historic buildings is a major concern for conservators, archaeologists, and scientists involved in preservation of the world's cultural heritage. The Maya archaeological sites in southern Mexico, some of the most important cultural artifacts in the Western Hemisphere, are constructed of limestone. High temperature and humidity have resulted in substantial microbial growth on stone surfaces at many of the sites. Despite the porous natureof limestone and the common occurrence of endolithic microorganisms in many habitats, little is known about the microbial flora living inside the stone. We found a large endolithic bacterial community in limestone from the interior of the Maya archaeological site Ek' Balam. Analysis of 16S rDNA clones demonstrated disparate communities (endolithic: >80% Actinobacteria, Acidobacteria, and Low GC Firmicutes; epilithic: >50% Proteobacteria). The presence of differing epilithic and endolithic bacterial communities may be a significant factor for conservation of stone cultural heritage materials and quantitative prediction of carbonate weathering.

Keywords

Proteobacteria Actinobacteria Firmicutes Stone Surface Stone Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was funded in part by a grant from the National Science Foundation (BES-9906337) to Harvard University and from the Consejo Nacional de Ciencia y Tecnologia to G. Hernandez-Duque. Additional support was provided by a grant from the Samuel H. Kress Foundation. The authors wish to thank the Instituto Nacional de Antropologia e Historia, Leticia Vargas de la Peña, and Alejandra Alonso Olvera for permission and help in collecting samples.

References

  1. 1.
    Altschul, SF, Madden, TL, Schäffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Res2533893402CrossRefPubMedGoogle Scholar
  2. 2.
    Amy, PS, Haldeman, DL, Ringelberg, D, Hall, DH, Russell, C 1992Comparison of identification systems for classification of bacteria isolated from water and endolithic habitats within the deep subsurfaceAppl Environ Microbiol5833673373PubMedGoogle Scholar
  3. 3.
    Ascaso, C, Wierzchos, J, Castello, R 1998Study of the biogenic weathering of calcareous limestones caused by lichen and endolithic microorganismsInt Biodeterior Biodegrad422938CrossRefGoogle Scholar
  4. 4.
    Banfield, JF, Barker, WW, Welch, SA, Taunton, A 1999Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphereProc Natl Acad Sci USA9634043411CrossRefPubMedGoogle Scholar
  5. 5.
    Bassi, M, Ferrari, A, Realini, M, Sorlini, C 1986Red stains on the Certosa of Pavia: a case of biodeteriorationInt Biodeterior3201205Google Scholar
  6. 6.
    Christensen, BE, Characklis, WG 1990Physical and chemical properties of biofilmsCharacklis, WGMarshall, KC eds. BiofilmsWileyNew YorkGoogle Scholar
  7. 7.
    Cole, JR, Chai, B, Marsh, TL, Farris, RJ, Wang, Q, Kulam, SA, Chandra, S, McGarrell, DM, Schmidt, TM, Garrity, GM, Tiedje, JM 2003The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomyNucleic Acids Res31442443CrossRefPubMedGoogle Scholar
  8. 8.
    Crispim, CA, Gaylarde, PM, Gaylarde, CC 2003Algal and cyanobacterial biofilms on calcareous historic buildingsCurr Microbiol467982CrossRefPubMedGoogle Scholar
  9. 9.
    Torre, JR, Goebel, BM, Friedmann, EI, Pace, NR 2003Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, AntarcticaAppl Environ Microbiol6938583867PubMedCrossRefGoogle Scholar
  10. 10.
    Bonaventura, MP, Gallo, M, Cacchio, P, Ercole, C, Lepidi, A 1999Microbial formation of oxalate films on monument surfaces: bioprotection or biodeterioration?Geomicrobiol J165564CrossRefGoogle Scholar
  11. 11.
    Gaylarde, CC, Morton, LHG 1999Deteriogenic biofilms on buildings and their control: a reviewBiofouling145974Google Scholar
  12. 12.
    Gaylarde, PM, Gaylarde, CC, Guiamet, PS, Saravia, SGG, Videla, HA 2001Biodeterioration of Mayan buildings at Uxmal and Tulum, MexicoBiofouling174145Google Scholar
  13. 13.
    Griffin, PS, Indictor, N, Koestler, RJ 1991The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatmentInt Biodeterior28187207CrossRefGoogle Scholar
  14. 14.
    Groth, I, Schumann, P, Laiz, L, Sanchez-Moral, S, Canaveras, JC, Saiz-Jimenez, C 2001Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, ItalyGeomicrobiol J18241258CrossRefGoogle Scholar
  15. 15.
    Gurtner, C, Heyrman, J, Pinar, G, Lubitz, W, Swings, J, Rolleke, S 2000Comparative analysis of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rDNA sequence analysisInt Biodeterior Biodegrad46229239CrossRefGoogle Scholar
  16. 16.
    Hale, ME,Jr 1983The Biology of Lichens3Edward ArnoldLondon137138Google Scholar
  17. 17.
    Hirsch, P, Eckhardt, FEW, Palmer, RJ,Jr 1995Fungi active in weathering of rock and stone monumentsCan J Bot73S1384S1390CrossRefGoogle Scholar
  18. 18.
    Horn, HS 1966Measurement of “overlap” in comparative ecological studiesAm Nat100419424CrossRefGoogle Scholar
  19. 19.
    Inagaki, F, Takai, K, Tetsushi, K, Sakihama, Y, Inoue, A, Horikoshi, K 2002Profile of microbial community structure and presence of endolithic microorganisms inside a deep-sea rockGeomicrobiol J19535552CrossRefGoogle Scholar
  20. 20.
    Koestler, RJ, Charola, AE, Wypyski, M, Lee, JJ 1985Microbiologically induced deterioration of dolomitic and calcitic stone as viewed by scanning electron microscopyFelix, G eds. Vth International Congress on Deterioration and Conservation of StonePresses Polytechniques RomandesLausanne, SwitzerlandGoogle Scholar
  21. 21.
    Krebs, CJ 1999Ecological Methodology2Benjamin-CummingsMenlo Park, CAGoogle Scholar
  22. 22.
    Krumbein, WE 1988Microbial interactions with mineral materialsHoughton, DRSmith, RNEggins, HOW eds. Biodeterioration 7ElsevierLondon78100Google Scholar
  23. 23.
    Kumar, R, Kumar, AV 1999Biodeterioration of stone in tropical environmentsThe Getty Conservation InstituteLos Angeles, CAGoogle Scholar
  24. 24.
    Kumar, R, Ginell, WS 1995Evaluation of consolidants for protection of weak Maya limestoneMethods of Evaluating Products for the Conservation of Porous Building Materials in Monuments, Preprints of the International ColloquiumICCROMRomeGoogle Scholar
  25. 25.
    Laiz, L, Gonzalez-Delvalle, M, Hermosin, B, Ortiz-Martinez, A, Saiz-Jimenez, C 2003Isolation of cave bacteria and substrate utilization at different temperaturesGeomicrobiol J20479489CrossRefGoogle Scholar
  26. 26.
    Lüttge, A, Conrad, PG 2004Direct observation of microbial inhibition of calcite dissolutionAppl Environ Microbiol7016271632PubMedCrossRefGoogle Scholar
  27. 27.
    McNamara, CJ, Perry, TD, Zinn, M, Breuker, M, Mitchell, R 2002Biodeterioration of concrete and stoneLittle, B eds. Microbiologically Influenced CorrosionNACE InternationalHouston, TXGoogle Scholar
  28. 28.
    McNamara, CJ, Perry, TD, Zinn, M, Breuker, M, Hernandez-Duque, G, Mitchell, R 2003Microbial processes in the deterioration of Mayan archaeological buildings in southern MexicoKoestler, RJKoestler, VHCharola, AENieto-Fernandez, FE eds. Art, Biology, and Conservation: Biodeterioration of Works of ArtThe Metropolitan Museum of ArtNew YorkGoogle Scholar
  29. 29.
    Morris, SA, Radajewski, S, Willison, TW, Murrell, JC 2002Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probingAppl Environ Microbiol6814461453CrossRefPubMedGoogle Scholar
  30. 30.
    Muyzer, G, Waal, EC, Uitterlinden, AG 1993Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNAAppl Environ Microbiol59695700PubMedGoogle Scholar
  31. 31.
    Muyzer, G, Teske, A, Wirsen, CO, Jannasch, HW 1995Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragmentsArch Microbiol164165172CrossRefPubMedGoogle Scholar
  32. 32.
    Nienow, JA, Friedmann, EI 1993Terrestrial lithophytic (rock) communitiesFriedmann, EI eds. Antarctic MicrobiologyWiley-Liss Inc.New YorkGoogle Scholar
  33. 33.
    Newberry, CJ, Webster, G, Cragg, BA, Parkes, RJ, Weightman, AJ, Fry, JC 2004Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190Environ Microbiol6274287CrossRefPubMedGoogle Scholar
  34. 34.
    Ortega-Morales, O, Hernández-Duque, G, Borges-Gómez, L, Guezennec, J 1999Characterization of epilithic microbial communities associated with Mayan stone monuments in Yucatan, MexicoGeomicrobiol J16221232CrossRefGoogle Scholar
  35. 35.
    Ortega-Morales, O, Guezennec, J, Hernández-Duque, G, Gaylarde, CC, Gaylarde, PM 2000Phototrophic biofilms on ancient Mayan buildings in Yucatan, MexicoCurr Microbiol408185CrossRefPubMedGoogle Scholar
  36. 36.
    Perry, TD, McNamara, CJ, Mitchell, R, Hernandez-Duque, G 2003An investigation of bacterial dissolution of Maya limestone: biodiversity and functional analysisSaiz-Jimenez, C eds. Molecular Biology and Cultural HeritageSwets and ZeitlingerLisseGoogle Scholar
  37. 37.
    Perry, TD, Duckworth, OW, McNamara, CJ, Martin, ST, Mitchell, R 2004Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution ratesEnviron Sci Technol3830403046CrossRefPubMedGoogle Scholar
  38. 38.
    Pilson, M 1998An Introduction to the Chemistry of the SeaPrentice-HallUpper Saddle River, NJGoogle Scholar
  39. 39.
    Porter, KG, Feig, YS 1980The use of DAPI for identifying and counting aquatic microfloraLimnol Oceanogr25943948CrossRefGoogle Scholar
  40. 40.
    Raymond, L 1995Petrology: The Study of Igneous, Sedimentary, and Metamorphic RocksBrown PublishersDubuque, IAGoogle Scholar
  41. 41.
    Reeder, RJ, Nugent, M, Tait, C, Morris, D, Heald, S, Beck, K, Hess, W, Lazirotti, A 2001Coprecipitation of uranium (VI) with calcite: XAFS, micro-XAS, and luminescence characterizationGeochim Cosmochim Acta6534913503CrossRefGoogle Scholar
  42. 42.
    Rodriguez-Navarro, C, Rodriguez-Gallego, M, Chekroun, KB, Gonzalez-Muñoz, MT 2003Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralizationAppl Environ Microbiol6921822193CrossRefPubMedGoogle Scholar
  43. 43.
    Rolleke, S, Muyzer, G, Wawer, C, Wanner, G, Lubitz, W 1996Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNAAppl Environ Microbiol6220592065PubMedGoogle Scholar
  44. 44.
    Saiz-Jimenez, C, Garcia-Rowe, J, Garcia del Cura, MA, Ortega-Calvo, JJ, Roekens, E, Grieken, R 1990Endolithic cyanobacteria in Maastricht limestoneSci Total Environ94209220CrossRefGoogle Scholar
  45. 45.
    Saiz-Jimenez, C 1999Biogeochemistry of weathering processes in monumentsGeomicrobiol J162737CrossRefGoogle Scholar
  46. 46.
    Saiz-Jimenez, C 2001The biodeterioration of building materialsStoecker, JC eds. Microbiologically Influenced Corrosion, vol. 2NACE InternationalHoustonGoogle Scholar
  47. 47.
    Sand, W, Bock, E 1991Biodeterioration of mineral materials by microorganisms—biogenic sulfuric and nitric acid corrosion of concrete and natural stoneGeomicrobiol J9129138Google Scholar
  48. 48.
    Schabereiter-Gurtner, C, Pinar, G, Lubitz, W, Rolleke, S 2001An advanced molecular strategy to identify bacterial communities on art objectsJ Microbiol Methods457787CrossRefPubMedGoogle Scholar
  49. 49.
    Schabereiter-Gurtner, C, Saiz-Jimenez, C, Pinar, G, Lubitz, W, Rolleke, S 2002Altamira cave Paleolithic paintings harbor partly unknown bacterial communitiesFEMS Microbiol Lett211711PubMedCrossRefGoogle Scholar
  50. 50.
    Schabereiter-Gurtner, C, Saiz-Jimenex, C, Pinar, G, Lubitz, W, Rolleke, S 2004Phylogenetic diversity if bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma)FEMS Microbiol Ecol47235247CrossRefPubMedGoogle Scholar
  51. 51.
    Schlesinger, WH 1997Biogeochemistry: An Analysis of Global ChangeAcademic PressSan Diego, CAGoogle Scholar
  52. 52.
    Simberloff, D 1978Use of rarefaction and related methods in ecologyDickson, KLCairns, J,JrLivingston, RJ eds. Biological Data in Water Pollution Assessment: Quantitative and Statistical Analysis, ASTM STP 652American Society for Testing and MaterialsPhiladelphia, PAGoogle Scholar
  53. 53.
    Sterflinger, K, Krumbein, WE 1997Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestonesGeomicrobiol J14219230Google Scholar
  54. 54.
    Stipp, SL, Konnerup-Madsen, J, Franzreb, K, Kulik, A, Mathieu, H 1998Spontaneous movement of ions through calcite at standard temperature and pressureNature396356359CrossRefGoogle Scholar
  55. 55.
    Stocks-Fischer, S, Galinat, JK, Bang, SS 1999Microbiological precipitation of CaCO3 Soil Biol Biochem3115631571CrossRefGoogle Scholar
  56. 56.
    Stumm, W, Morgan, JJ 1996Aquatic ChemistryWileyNew YorkGoogle Scholar
  57. 57.
    Swofford, DL 2003PAUP*. Phylogenic Analysis Using Parsimony (*and other Methods), Version 4Sinauer AssociatesSunderland, MAGoogle Scholar
  58. 58.
    Taubel, M, Kampfer, P, Buczolits, S, Lubitz, W, Busse, HJ 2003Bacillus barbaricus sp. nov., isolated from an experimental wall paintingInt J Syst Evol Microbiol53725730PubMedCrossRefGoogle Scholar
  59. 59.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res2448764882CrossRefGoogle Scholar
  60. 60.
    Tiano, P, Biagiotti, L, Mastromei, G 1999Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluationJ Microbiol Methods36139145CrossRefPubMedGoogle Scholar
  61. 61.
    Videla, HA, Guiamet, PS, Saravia, SG 2000Biodeterioration of Mayan archaeological sites in the Yucatan Peninsula, MexicoInt Biodeterior Biodegrad46335341CrossRefGoogle Scholar
  62. 62.
    Videla, HA, Guiamet, PS, de Saravia, SG, Maldonaldo, L (2001) Mechanisms of Microbial Biodeterioration of Limestone in Mayan Buildings. Paper No. 01250, Corrosion2001, NACE International, HoustonGoogle Scholar
  63. 63.
    Warscheid, T, Oelting, M, Krumbein, WE 1991Physico-chemical aspects of biodeterioration processes in rocks with special regard to organic pollutantsInt Biodeterior283748CrossRefGoogle Scholar
  64. 64.
    Warscheid, T, Braams, J 2000Biodeterioration of stone: a reviewInt Biodeterior Biodegrad46343368CrossRefGoogle Scholar
  65. 65.
    Welch, SA, Vandevivere, P 1994Effect of microbial and other naturally occurring polymers on mineral dissolutionGeomicrobiol J12227238Google Scholar
  66. 66.
    Wolda, H 1981Similarity indices, sample size and diversityOecologia50296302CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Christopher J. McNamara
    • 1
  • Thomas D. PerryIV
    • 1
  • Kristen A. Bearce
    • 1
  • Guillermo Hernandez-Duque
    • 2
  • Ralph Mitchell
    • 1
  1. 1.Laboratory of Microbial Ecology, Division of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Universidad Politecnica de AguascalientesAguascalientesMexico

Personalised recommendations