Microbial Ecology

, Volume 51, Issue 1, pp 117–127

Bacterial Abundance, Activity, and Viability in the Eutrophic River Warnow, Northeast Germany

Article

Abstract

The River Warnow is the drinking water source for the city of Rostock. Its eutrophic status is accompanied by high amounts of bacteria, which may reach up to 24 × 106 cells mL−1 as recorded during a seasonal study in 2002. Because the river is eutrophic and also heavily loaded with organic matter, this burden is a problem for drinking water purification, as it must be removed completely to not trigger new bacterial growth in the pipeline network. Therefore, restoration measures in the river have to be planned, and bacteria have to be favored as decomposers. That includes the investigation of the physiological state of bacteria in situ. Viable and active cells in the lower reaches of River Warnow were estimated using a broad set of methods. Intact bacteria were investigated by the LIVE/DEAD® BacLight™ bacterial viability kit, containing a mixture of permeant and impermeant nucleic acid stains. Cells with ribosomes were visualized by fluorescence in situ hybridization with the EUB338 oligonucleotide probe. Intact cells and ribosome-containing bacteria represented 24% of total numbers stained by 4′6,-diamidino-2-phenylindole (DAPI) or 66 and 62%, respectively, in relation to all bacteria visualized by the LIVE/DEAD kit. Both fractions were considered as viable, although the fraction of RIB + bacteria is most likely underestimated by the protocol applied. 5-Cyano-2,3-ditolyltetrazolium chloride (CTC) was applied to mark respiring bacteria. The esterase substrate CellTracker™ Green 5-chloromethylfluorescein diacetate showed cells with intracellular hydrolytic activity. Whereas 1.5% of DAPI-stained bacteria were observed as respiring, 3.8% exhibited intracellular hydrolytic activity on average. If these active fractions were calculated as the percentages of intact cells, much higher fractions of 5.4% were respiring and 16% hydrolytic. Temperature was a main factor influencing total and viable cell numbers simultaneously. The results confirm that there are different states of viable and active cells in natural bacterioplankton communities. However, it remains unclear why fractions of viable and active cells were rather low in this eutrophic river in comparison to similar waters. We recommend to carefully address cells as viable in contrast to nonviable, i.e., dead. As viable cells may be active or inactive with respect to many different activities, e.g., substrate uptake, respiration, hydrolysis, and cell deviation, it is necessary to choose the method to visualize active cells according to the question to be answered.

References

  1. 1.
    Amann, RI, Binder, BJ, Olson, RJ, Chisholm, R, Devereux, R, Stahl, DA 1990Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populationsAppl Environ Microbiol5619191925PubMedGoogle Scholar
  2. 2.
    Bahnwart, M, Hübener, T, Schubert, H 1999Downstream changes in phytoplankton composition and biomass in a lowland river-lake system (Warnow River, Germany)Hydrobiologia39199111Google Scholar
  3. 3.
    Behrens, S, Ruhland, C, Inacio, J, Huber, H, Fonseca, A, Spencer-Martins, I, Fuchs, BM, Amann, R 2003In situ accessibility of small-subunit rRNA of members of the domains Bacteria, Archaea, and Eucarya to Cy3-labeled oligonucleotide probesAppl Environ Microbiol6917481758PubMedGoogle Scholar
  4. 4.
    Bergh, O, Boersheim, KY, Bratbak, G, Heldal, M 1989High abundance of viruses found in aquatic environmentsNature340467468CrossRefPubMedGoogle Scholar
  5. 5.
    Berman, T, Kaplan, B, Chava, S, Viner, Y, Sherr, BF, Sherr, EB 2001Metabolically active bacteria in Lake KinneretAquat Microb Ecol23213224Google Scholar
  6. 6.
    Berninger, UG, Finlay, BJ, Kuuppo Leinikki, P 1991Protozoan control of bacterial abundances in freshwaterLimnol Oceanogr36139147CrossRefGoogle Scholar
  7. 7.
    Börner, R, Bönsch, R, Fadschild, K, Gosselck, F, Hübener, T, Klinkenberg, G, Kolbow, D, Lill, D, Merkel, G, Neumann, C, Randow, FFE, Schlungbaum, G, Selig, U, Winkler, H 1994Ein Beitrag zur Biologie der Warnow, eines norddeutschen nacheiszeitlichen TieflandflussesSchriftenr LUNG M/V25692Google Scholar
  8. 8.
    Bornscheuer, UT 2002Microbial carboxyl esterases: classification, properties and application in biocatalysisFEMS Microbiol Rev267381PubMedGoogle Scholar
  9. 9.
    Boulos, L, Prevost, M, Barbeau, B, Coallier, J, Desjardins, R 1999LIVE/DEAD®BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking waterJ Microbiol Methods377786CrossRefPubMedGoogle Scholar
  10. 10.
    Bouvier, T, Giorgio, PA 2003Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reportsFEMS Microbiol Ecol44315PubMedGoogle Scholar
  11. 11.
    Bunthof, CJ, Braak, S, Breeuwer, P, Rombouts, FM, Abee, T 1999Rapid fluorescence assessment of the viability of stressed Lactococcus lactisAppl Environ Microbiol6536813689PubMedGoogle Scholar
  12. 12.
    Chen, F, Lu, JR, Binder, BJ, Liu, YC, Hodson, RE 2001Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR GoldAppl Environ Microbiol67539545PubMedGoogle Scholar
  13. 13.
    Choi, JW, Sherr, BF, Sherr, EB 1999Dead or alive? A large fraction of ETS-inactive marine bacterioplankton cells, as assessed by reduction of CTC, can become ETS-active with incubation and substrate additionAquat Microb Ecol18105115Google Scholar
  14. 14.
    Cottrell, MT, Kirchman, DL 2003Contribution of major bacterial groups to bacterial production (thymidine and leucine incorporation) in the Delaware estuaryLimnol Oceanogr48168178CrossRefGoogle Scholar
  15. 15.
    Creach, V, Baudoux, AC, Bertru, G, Rouzic, B 2003Direct estimate of active bacteria: CTC use and limitationsJ Microbiol Methods521928PubMedGoogle Scholar
  16. 16.
    Daims, H, Bruhl, A, Amann, R, Schleifer, KH, Wagner, M 1999The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe setSyst Appl Microbiol22434444PubMedGoogle Scholar
  17. 17.
    Giorgio, PA, Cole, JJ, Cimbleris, A 1997Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systemsNature385148151Google Scholar
  18. 18.
    Fenchel, T, King, GM, Blackburn, TH 1998Bacterial biogeochemistry: the ecophysiology of mineral cycling. 2. AuflAcademic PressLondonGoogle Scholar
  19. 19.
    Gasol, JM, Zweifel, UL, Peters, F, Fuhrman, JA, Hagström, A 1999Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteriaAppl Environ Microbiol6544754483PubMedGoogle Scholar
  20. 20.
    Gewässergütebericht Mecklenburg-Vorpommern (1998/1999) Zustand der Gewässergüte von Fließ-, Stand- und Küstengewässern und der Grundwasserbeschaffenheit in Mecklenburg-Vorpommern. Hrsg. Umweltministerium Mecklenburg-VorpommernGoogle Scholar
  21. 21.
    Glöckner, FO, Amann, R, Alfreider, A, Pernthaler, J, Psenner, R, Trebesius, K, Schleifer, KH 1996An in situ hybridization protocol for detection and identification of planktonic bacteriaSyst Appl Microbiol19403406Google Scholar
  22. 22.
    Glöckner, FO, Zaichikov, E, Belkova, N, Denissova, L, Pernthaler, J, Pernthaler, A, Amann, R 2000Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteriaAppl Environ Microbiol6650535065PubMedGoogle Scholar
  23. 23.
    Grégori, G, Citterio, S, Ghiani, A, Labra, M, Sgorbati, S, Brown, S, Denis, M 2001Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double stainingAppl Environ Microbiol6746624670PubMedGoogle Scholar
  24. 24.
    Haglund, AL, Lantz, P, Tornblom, E, Tranvik, L 2003Depth distribution of active bacteria and bacterial activity in lake sedimentFEMS Microbiol Ecol463138PubMedGoogle Scholar
  25. 25.
    Haugland, RP (2004) Handbook of fluorescent probes and research chemicals. Web editionGoogle Scholar
  26. 26.
    Hoppe, H-G, Gocke, K, Zamorano, D, Zimmermann, R 1983Degradation of macromolecular organic compounds in a tropical lagoon (Ciénaga Grande, Colombia) and its ecological significanceInt Rev Gesamten Hydrobiol68811824Google Scholar
  27. 27.
    Imai, A, Shibata, A, Kikuchi, T, Toda, T, Taguchi, S 2001Comparison of two epifluorescence counting methods of bacteria in the ocean—4′6-diamidino-2-phenylindole (DAPI) versus SYBR Green I methodActinia143136Google Scholar
  28. 28.
    Johnstone, BH, Jones, RD 1989A study on the lack of [methyl-H3] thymidine uptake and incorporation by chemolithotrophic bacteriaMicrob Ecol187377CrossRefGoogle Scholar
  29. 29.
    Jugnia, LB, Richardot, M, Debroas, D, Sime-Ngando, T, Devaux, J 2000Variations in the number of active bacteria in the euphotic zone of a recently nodded reservoirAquat Microb Ecol22251259Google Scholar
  30. 30.
    Jürgens, K, Pernthaler, J, Schalla, S, Amann, R 1999Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazingAppl Environ Microbiol6512411250PubMedGoogle Scholar
  31. 31.
    Kell, DB, Kaprelyants, AS, Weichart, DH, Harwood, CR, Barer, MR 1998Viability and activity in readily culturable bacteria: a review and discussion of the practical issuesAntonie van Leeuwenhoek73169187CrossRefPubMedGoogle Scholar
  32. 32.
    Kirchman, DL, Rich, JH, Barber, RT 1995Biomass and biomass production of heterotrophic bacteria along 140 degree W in the equatorial Pacific: effect of temperature on the microbial loopDeep-Sea Res42603619Google Scholar
  33. 33.
    Klinkenberg, G, Schumann, R 1995Abundance changes of autotrophic and heterotrophic picoplankton in the Zingster Strom, a shallow, tideless estuary south of the Darß-Zingst Peninsula (Southern Baltic Sea)Arch Hydrobiol134359377Google Scholar
  34. 34.
    Lebaron, P, Parthuisot, N, Catala, P 1998Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systemsAppl Environ Microbiol6417251730PubMedGoogle Scholar
  35. 35.
    Lengeler, JWDrews, GSchlegel, HG eds. 1999Biology of the prokaryotesThiemeStuttgartGoogle Scholar
  36. 36.
    Lisle, JT, Pyle, BH, McFeters, GA 1999The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157 H7Lett Appl Microbiol294247CrossRefPubMedGoogle Scholar
  37. 37.
    Luna, GM, Manini, E, Danovaro, R 2002Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significanceAppl Environ Microbiol6835093513PubMedGoogle Scholar
  38. 38.
    Malcolm-Lawes, DJ, Koon, HW 1990Determination of orthophosphate in water and soil using a flow analyzerAnalyst156567Google Scholar
  39. 39.
    McNamara, CJ, Lemke, MJ, Leff, LG 2003Underestimation of bacterial numbers in starvation-survival mode using the nucleic acid stain DAPIArch Hydrobiol157309319CrossRefGoogle Scholar
  40. 40.
    Mulholland, MR, Lee, C, Glibert, PM 2003Extracellular enzyme activity and uptake of carbon and nitrogen along an estuarine salinity and nutrient gradientMar Ecol Prog Ser258317Google Scholar
  41. 41.
    Noble, RT, Fuhrman, JA 1998Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteriaAquat Microb Ecol14113118Google Scholar
  42. 42.
    Pernthaler, A, Pernthaler, J, Amann, R 2002Fluorescence in situhybridization and catalyzed reporter deposition for the identification of marine bacteriaAppl Environ Microbiol6830943101PubMedGoogle Scholar
  43. 43.
    Pernthaler, A, Preston, CM, Pernthaler, J, DeLong, EF, Amann, R 2002Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaeaAppl Environ Microbiol68661667PubMedGoogle Scholar
  44. 44.
    Porra, RJ, Thompson, WA, Kriedmann, PE 1989Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopyBiochim Biophys Acta975384394Google Scholar
  45. 45.
    Porter, J, Diaper, J, Edwards, C, Pickup, R 1995Direct measurements of natural planktonic bacterial community viability by flow cytometryAppl Environ Microbiol6127832786PubMedGoogle Scholar
  46. 46.
    Porter, KG, Feig, YS 1980The use of DAPI for counting and identifying aquatic microfloraLimnol Oceanogr25943948CrossRefGoogle Scholar
  47. 47.
    Quéric, NV, Soltwedel, T, Arntz, WE 2004Application of a rapid direct viable count method to deep-sea sediment bacteriaJ Microbiol Methods57351367PubMedGoogle Scholar
  48. 48.
    Rae, R, Vincent, WF 1998Effects of temperature and ultraviolet radiation on microbial food web structure: potential responses to global changeFreshw Biol40747758CrossRefGoogle Scholar
  49. 49.
    Randow, FFE 1977Ergebnisse mehrjähriger UV-spektroskopischer Untersuchungen der WarnowActa Hydrochim Hydrobiol5431435Google Scholar
  50. 50.
    Randow, FFE, Hübener, T, Merkel, G 1996Hazards for the Restock water supply from a tar-contaminated sediment in the River WarnowToxicol Lett88355358CrossRefPubMedGoogle Scholar
  51. 51.
    Rodriguez, GG, Phipps, D, Ishiguro, K, Ridgway, HF 1992Use of a fluorescent redox probe for direct visualization of actively respiring bacteriaAppl Environ Microbiol5818011808PubMedGoogle Scholar
  52. 52.
    Rohde, KH, Nehring, D 1979Ausgewählte Methoden zur Bestimmung von Inhaltsstoffen im Meer-und BrackwasserGeod Geophys Veröff43137Google Scholar
  53. 53.
    Schumann, R, Rentsch, D, Görs, S, Schiewer, U 2001Composition and quantities of seston particles along a salinity and eutrophication gradient in coastal waters of the Southern Baltic Sea: significance of detritus and transparent mucoid materialMar Ecol Prog Ser2181731Google Scholar
  54. 54.
    Schumann, R, Rieling, T, Görs, S, Hammer, A, Selig, U, Schiewer, U 2003Viability of bacteria from different aquatic habitats. I Environmental conditions and productivityAquat Microb Ecol32121135Google Scholar
  55. 55.
    Schumann, R, Schiewer, U, Karsten, U, Rieling, T 2003Viability of bacteria from different aquatic habitats. II Cellular fluorescent markers for membrane integrity and metabolic activityAquat Microb Ecol32137150Google Scholar
  56. 56.
    Schumann, R, Sievert, C, Schiewer, U 1992Structural compositions of pelagic communities in the River Warnow and their changesInt Rev Gesamten Hydrobiol77173185CrossRefGoogle Scholar
  57. 57.
    Sherr, EB, Sherr, BF, Sigmon, CT 1999Activity of marine bacteria under incubated and in situ conditionsAquat Microb Ecol20213223Google Scholar
  58. 58.
    Sherr, EB, Sherr, BF, Verity, PG 2002Distribution and relation of total bacteria, active bacteria, bacterivory, and volume of organic detritus in Atlantic continental shelf waters off Cape Hatteras NC, USADeep-Sea Res4945714585Google Scholar
  59. 59.
    Smith, EM, Giorgio, PA 2003Low fractions of activebacteriain natural aquatic communities?Aquat Microb Ecol31203208Google Scholar
  60. 60.
    Smith, JJ, McFeters, GA 1997Mechanisms of INT (2-(4-iodo-phenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride), and CTC (5-cyano-2,3-ditolyl-terazolium chloride) reduction in Escherichia coli K-12J Microbiol Methods29161175CrossRefGoogle Scholar
  61. 61.
    Solano-Serena, F, Marchal, R, Heiss, S, Vandecasteele, JP 2004Degradation of isooctane by Mycobacterium austroafricanum IFP2173 growth and catabolic pathwayJ Appl Microbiol97629639CrossRefPubMedGoogle Scholar
  62. 62.
    Sommer, U, Gliwicz, ZM, Lampert, W, Duncan, A 1986The PEG-model of seasonal succession of planktonic events in fresh watersArch Hydrobiol106433471Google Scholar
  63. 63.
    Søndergaard, M, Danielsen, M 2001Active bacteria (CTC+) in temperate lakes: temporal and cross-system variationsJ Plankton Res2311951206Google Scholar
  64. 64.
    Sugimura, Y, Suzuki, Y 1988A high temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sampleMar Chem24105131CrossRefGoogle Scholar
  65. 65.
    Ullrich, S, Karrasch, B, Hoppe, H-G, Jeskulke, K, Mehrens, M 1996Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chlorideAppl Environ Microbiol6245874593PubMedGoogle Scholar
  66. 66.
    Verardo, DJ, Froelich, PN, McIntyre, A 1990Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 AnalyserDeep-Sea Res37157165CrossRefGoogle Scholar
  67. 67.
    Williams, PJLB 1998The balance of plankton respiration and photosynthesis in the open oceansNature3945557Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Biological Science, Applied EcologyUniversity of RostockRostockGermany

Personalised recommendations