Microbial Ecology

, Volume 51, Issue 1, pp 13–21 | Cite as

Bacteria Isolated from the Different Developmental Stages and Larval Organs of the Obligate Parasitic Fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae)

  • E. M. Tóth
  • É. Hell
  • G. Kovács
  • A. K. Borsodi
  • K. Márialigeti


Wohlfahrtia magnifica (Diptera: Sarcophagidae) is the major myiasis-causing fly species in the whole of Eurasia for most important domestic animals. The aim of the present work was to obtain data on the culturable bacteria isolated under aerobic conditions from this fly: bacteria were isolated from all developmental stages (larvae, pupa, and imago) of Wohlfahrtia magnifica, and the third-stage larval organs were also sampled. To determine the possible antagonistic effects between the dominant bacterial groups, an antibiosis assay was carried out. Plating and isolation of bacteria was performed by classical microbiological methods. Characterization of the isolated strains was carried out via a polyphasic approach; classical phenotypic tests, chemotaxonomical examinations, and 16S rDNA sequence analyses were also applied. In the case of maggot macerate samples, members of the family Enterobacteriaceae were characteristic. Members of a new genus (Schineria) belonging to the γ subdivision of proteobacteria were also isolated. According to our data, the shifts in the Schineria and Proteus populations within the larvae are strongly influenced by their interactions with each other and among the members of the family Enterobacteriaceae. The pupa and imago samples contained several other Gram-negative bacteria (Stenotrophomonas, Brevundimonas, etc.). Among Gram-positive bacteria, in all maggot macerate samples, members of the genus Bacillus and the ArthrobacterMicrococcus group of actinobacteria were dominant (neither of them was a producer or sensitive to the compounds of other microorganisms), and bacteria related to the genus Corynebacterium were also found. From the larvae Aureobacterium liquefaciens and Enterococcus faecalis were isolated, and from the pupae Dietzia maris and Enterococcus faecalis. In the samples of third-stage larval organs, the dominant groups were the same as in the third-stage larval macerate sample; however, several additional genera/species were observed (Rhodococcus fascians, Streptomyces sp., Rathayibacter sp., Bacillus thuringiensis/cereus).


  1. 1.
    Ishikawa, H 1989

    A synthesis: the types of interaction system between bacteria and insects

    Nardon, VGianinazzi-Pearson, AMMargulis, LSmith, DC eds. Endocytobiology 4INRAParis355361
    Google Scholar
  2. 2.
    Groombridge, B 1992

    Global biodiversity

    Chapman, FHall, M eds. Status of Earth's Living ResourcesAcademic PressLondon6973
    Google Scholar
  3. 3.
    Cazamier, AE, Hackstein, JHP, Camp, HJM, Rosenberg, J, Drift, C 1997Bacteria in the intestinal tract of different species of ArthropodsMicrob Ecol33189197Google Scholar
  4. 4.
    Hall, MJR, Farkas, R 2000

    Traumatic myiasis of humans and animals

    Papp, LDarvas, B eds. Contributions to a Manual of Palearctic DipteraScience HeraldBudapest751768
    Google Scholar
  5. 5.
    Ruiz-Martinez, I, Soler-Cruz, MD, Benitez-Rodriguez, R, Munoz-Parra, S, Diaz-Lopez, M, Florido-Navio, A 1987Myiasis caused byWohlfahrtia magnifica in Southern SpainIsr J Vet Med433441Google Scholar
  6. 6.
    Hall, MJR, Wall, R 1995Myiasis of humans and domestic animalsAdv Parasitol35257337PubMedCrossRefGoogle Scholar
  7. 7.
    Farkas, R, Hall, MJR, Kelemen, F 1997Wound myiasis of sheep in HungaryVet Parasitol69133144PubMedGoogle Scholar
  8. 8.
    Farkas, R, Hall, MJR 1998Prevalence of traumatic myiasis in Hungary: a questionnaire survey of veterinariansVet Rec143440443PubMedGoogle Scholar
  9. 9.
    Hall, MJR 1997Traumatic myiasis of sheep in Europe: a reviewParasitologia39409413Google Scholar
  10. 10.
    Ruiz-Martinez, I, Soler-Cruz, MD, Benitez-Rodriguez, R, Perez-Jimenez, JM, Diaz-Lopez, M 1991Myiasis caused by Wohlfahrtia magnifica in sheep and goats in southern Spain. II. Effect of age, body region and sex on larval infestationIsr J Vet Med464448Google Scholar
  11. 11.
    Khoga, JM (1994) From healthy skin to myiatic lesions: changes in the bacterial populations of vulval region in sheep. Ph.D. dissertation, Eötvös Loránd University, Budapest, pp 21–69Google Scholar
  12. 12.
    Tóth, E, Farkas, R, Márialigeti, K, Mokhtar, IS 1998Bacteriological investigations on wound myiasis of sheep caused by Wohlfahrtia magnifica (Diptera: Sarcophagidae)Acta Vet Hung46219229PubMedGoogle Scholar
  13. 13.
    Khoga, JM, Tóth, E, Márialigeti, K, Borossay, J 2002Fly-attracting volatiles produced by Rhodococcus fascians and Mycobacterium aurum isolated from myiatic lesions of sheepJ Microbiol Methods48281287CrossRefPubMedGoogle Scholar
  14. 14.
    King, EO, Ward, MK, Raney, DE 1954Two simple media for the demonstration of pyocyanin and fluoresceinJ Lab Clin Med44301302PubMedGoogle Scholar
  15. 15.
    Cowan, ST, Steel, KJ 1974Manual for Identification of Medical BacteriaCambridge University PressCambridge896Google Scholar
  16. 16.
    Claus, M 1992A standardised Gram staining procedureWorld J Microbiol Biotechnol8451452CrossRefGoogle Scholar
  17. 17.
    Smibert, RM, Krieg, NR 1994

    Phenotypic characterisation

    Gerhardt, PMurray, RGEWood, WAKrieg, NR eds. Methods for General and Molecular BacteriologyAmerican Society for MicrobiologyWashington, DC603711
    Google Scholar
  18. 18.
    Duguid, JP 1951The demonstration of bacterial capsules and slimeJ Pathol Bacteriol63673CrossRefPubMedGoogle Scholar
  19. 19.
    Tarrand, JJ, Gröschel, DHM 1982Rapid, modified oxidase test for oxidase-variable bacterial isolatesJ Clin Microbiol16772774PubMedGoogle Scholar
  20. 20.
    Hugh, R, Leifson, E 1953The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by Gram negative bacteriaJ Bacteriol662426PubMedGoogle Scholar
  21. 21.
    Elek, SD, Levy, E 1954The nature of discrepancies between haemolysins in culture filtrates and plate haemolysin patterns of staphylococciJ Pathol Bacteriol603134Google Scholar
  22. 22.
    Simmons, JS 1926A culture medium for differentiating organisms of typhoid colon aerogenes groups and for isolation of certain fungiJ Infect Dis39209211Google Scholar
  23. 23.
    Holding, AJ, Collee, JG 1971

    Routine biochemical tests

    Norris, JRRibbons, DW eds. Methods in Microbiology 6AAcademic PressLondon17
    Google Scholar
  24. 24.
    Yamada, K, Komagata, K 1972Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristicsJ Gen Appl Microbiol18399416Google Scholar
  25. 25.
    Collins, MD, Pirouz, T, Goodfellow, M, Minnikin, DE 1977Distribution of menaquinones in actinomycetes and corynebacteriaJ Gen Microbiol100221230PubMedGoogle Scholar
  26. 26.
    Groth, I, Schumann, P, Rainey, FA, Martin, K, Schuetze, B, Augsten, K 1997Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soilInt J Syst Bacteriol4711291133PubMedGoogle Scholar
  27. 27.
    Stead, DE, Sellwood, JE, Wilson, J, Viney, I 1992Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteriaJ Appl Bacteriol72315321Google Scholar
  28. 28.
    Groth, I, Schumann, P, Weiss, N, Martin, K, Rainey, FA 1996Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wallInt J Syst Bacteriol46234239PubMedCrossRefGoogle Scholar
  29. 29.
    Rainey, FA, Rainey, WN, Kroppenstedt, RM, Stackebrandt, E 1996The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. novInt J Syst Bacteriol4610881092PubMedGoogle Scholar
  30. 30.
    Madiak, BL, Cole, CT, Parker, CT, Garrity, GM, Larsen, N, Li, B, Lilburn, MJ, McCaughey, MJ, Olsen, GJ, Overbeek, R, Pramanik, S, Schmidt, JT, Woese, CR 1997The RDP (Ribosomal Database Project)Nucleic Acids Res25109111Google Scholar
  31. 31.
    Strunk, O, Ludwig, W 1995ARB—A Software Environment for Sequence DataDept. of Microbiology, Technical University of MunichGermanyGoogle Scholar
  32. 32.
    Altschul, SF, Madden, TL, Schäffel, AA, Zhang, J, Zhang, Z, Miller, W, Lipmann, DJ 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Res2533893402CrossRefPubMedGoogle Scholar
  33. 33.
    Quener, SW, Lively, DH 1986Demain, ALSolomon, NA eds. Manual of Industrial Microbiology and BiotechnologyAmerican Society for MicrobiologyWashington, DC155157Google Scholar
  34. 34.
    Romesburg, HC 1984Cluster Analysis for ResearchersLifetime Learning PublicationsBelmont, CA1423Google Scholar
  35. 35.
    Tóth, E, Kovács, G, Schumann, P, Kovács, AL, Steiner, U, Halbritter, A, Márialigeti, K 2001Schineria larvae gen. nov. sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae)J Syst Evol Microbiol51401407Google Scholar
  36. 36.
    Greenberg, B 1959Persistence of bacteria in the developmental stages of housefly. IV. Infectivity of the newly emerged adultAm J Trop Med Hyg8618627PubMedGoogle Scholar
  37. 37.
    Bromel, M, Duh, FM, Erdman, GR, Hammack, L, Gassner, G 1983

    Bacteria associated with the srewworm fly [Cochliomya hominivorax (Coquerel)] and their metabolites

    Nardon, VGianiazzi-Pearson, AMargulis, MSmith, DC eds. Endocytobiology 2INRAParis791802
    Google Scholar
  38. 38.
    Urban, JE, Broce, A 1998Flies and their bacterial loads in greyhound dog kennels in KansasCurr Microbiol36164170PubMedGoogle Scholar
  39. 39.
    Gassner, G, Duh, FM, Bromel, M 1983

    Chitinolytic activity: a prelude to a symbiotic relationship between bacteria and the screwworm fly

    Schenk, HEASchwemmler, W eds. Endocytobiology 2INRAParis802807
    Google Scholar
  40. 40.
    Porter, AG, Davidson, EW, Liu, JW 1993Mosquitocidal toxins of Bacilli and their genetic manipulation for effective biological control of mosquitoesMicrobiol Rev57838861PubMedGoogle Scholar
  41. 41.
    Kocur, M 1984

    Genus Micrococcus

    Sneath, PHAMair, NSSharpe, MEHolt, JG eds. Bergey's Manual of Systematic BacteriologyWilliams and WilkinsBaltimore10041008
    Google Scholar
  42. 42.
    Cruden, DL, Markovetz, AJ 1987Microbial ecology of the cockroach gutAnnu Rev Microbiol41617643CrossRefPubMedGoogle Scholar
  43. 43.
    Karsten, GR, Drake, HL 1995Comparative assessment of the aerobic and anaerobic microfloras of the earthworms guts and forest soilsAppl Environ Microbiol6110391044PubMedGoogle Scholar
  44. 44.
    Collins, MD, Cummins, CS 1984

    Genus Corynebacterium

    Sneath, PHAMair, NSSharpe, MEHolt, JG eds. Bergey's Manual of Systematic BacteriologyWilliams and WilkinsBaltimore13201323
    Google Scholar
  45. 45.
    Hardie, MJ 1984

    Genus Streptococcus

    Sneath, PHAMair, NSSharpe, MEHolt, JG eds. Bergey's Manual of Systematic BacteriologyWilliams and WilkinsBaltimore10431071
    Google Scholar
  46. 46.
    Leadbetter, JR, Greenberg, EP 2000Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxusJ Bacteriol18269216926CrossRefPubMedGoogle Scholar
  47. 47.
    Erdmann, GR, Bromel, M, Gassner, G, Freeman, T, Fischer, A 1984Antibacterial activity demonstrated by culture filtrates of Proteus mirabilis isolated from screwworm Cochliomyia hominivorax (Diptera Calliphorida)J Med Entomol23159167Google Scholar
  48. 48.
    Erdmann, GR, Khalil, SKW 1986Isolation and identification of two antibacterial agents produced by a strain of Proteus mirabilis isolated from screwworm Cochliomyia hominivorax (Diptera Calliphorida)J Med Entomol23208217PubMedGoogle Scholar
  49. 49.
    Staley, JT, Konopka, A 1985Measurement of in situ activities of nonphotosyntetic microorganism in aquatic and terrestrial habitatsAnnu Rev Microbiol39321346CrossRefPubMedGoogle Scholar
  50. 50.
    Hugenholtz, PBM, Goebel, M, Pace, NR 1998Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversityJ Bacteriol18047654774PubMedGoogle Scholar
  51. 51.
    Devereux, R, Mundfrom, GW 1994A phylogenetic tree of 16S rRNA sequences from sulphate-reducing bacteria in sandy marine sedimentAppl Environ Microbiol6034373439PubMedGoogle Scholar
  52. 52.
    Pasteur, BJ, Dewhirst, FE, Cooke, SM, Fussing, Y, Poulsen, LK, Breznak, JA 1996Phylogeny of not-yet-cultivated spirochetes from termite gutsAppl Environ Microbiol62347352Google Scholar
  53. 53.
    Suau, A, Bonnet, R, Sutren, M, Gordon, JJ, Gibson, GR, Collins, MD, Dore, J 1999Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gutAppl Environ Microbiol6547994807PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. M. Tóth
    • 1
  • É. Hell
    • 1
    • 2
  • G. Kovács
    • 1
    • 3
  • A. K. Borsodi
    • 1
  • K. Márialigeti
    • 1
  1. 1.Department of Microbiology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Parasitology and Zoology, Faculty of Veterinary ScienceSzent István UniversityBudapestHungary
  3. 3.National Public Health and Health Officer's ServiceBudapestHungary

Personalised recommendations