Microbial Ecology

, Volume 49, Issue 2, pp 245–256 | Cite as

Nutrient and Temperature Limitation of Bacterioplankton Growth in Temperate Lakes

Article

Abstract

Limitation of bacterioplankton production by nutrients and temperature was investigated in eight temperate lakes in summer. Six of the lakes were resampled in autumn. The lakes differ in nutrient content, water color, and concentration of dissolved organic carbon. Nutrients (phosphorus, nitrogen, and organic carbon) were added alone and in all possible combinations to filtered lake water inoculated with bacteria from the lake. After incubation for 36–40 h at in situ temperatures (ranging from 7 to 20°C), the response in bacterioplankton production was determined. The effect of increased temperature on bacterioplankton growth was also tested. Bacterioplankton production was often limited by phosphorus alone, organic carbon alone, or the two in combination. Phosphorus limitation of bacterioplankton production was more common in the summer, whereas limitation by organic carbon was more frequently observed in the autumn. There was a close balance between limitation by phosphorus and organic carbon in the epilimnion in the summer. In the hypolimnion in the summer, bacterioplankton growth was primarily phosphorus-limited. The effect of phosphorus additions decreased with increasing phosphorus concentrations in the lakes. However, there were no correlations between the effect of added organic carbon and water color, dissolved organic carbon concentration, or phosphorus concentration. When temperature was low (in the hypolimnion in the summer, and throughout the water column in the autumn) temperature also limited bacterioplankton production. Thus, temperature and inorganic nutrients or organic compounds can limit bacterioplankton growth both alone and simultaneously. However, at low temperatures, temperature is the most important factor influencing bacterioplankton growth.

Notes

Acknowledgments

Ulrika Stensdotter-Blomberg, Jan Johansson, Sandra Lindahl, Isabell Olevall, and Björn Vrede are acknowledged for help with fieldwork and/or analyses in the laboratory. Eva Lindström and Tobias Vrede and two anonymous reviewers are acknowledged for constructive comments on the manuscript. This study was financed by the Knut and Alice Wallenbergs Foundation, the Helge Ax:son Johnssons Foundation, the Foundation of Oscar and Lili Lamms Minne, and the Royal Swedish Academy of Science.

References

  1. 1.
    Bell, RT 1993

    Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidine

    Kemp, PFSherry, BFCole, JJ eds. Handbook of Methods in Aquatic Microbial EcologyLewisBoca Raton, FL495503
    Google Scholar
  2. 2.
    Bell, RT 1990An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of [3H] thymidineLimnol Oceanogr35910915Google Scholar
  3. 3.
    Bendschneider, K, Robinson, RJ 1952A new spectrophotometric determination of nitrite in sea waterJ Mar Res118796Google Scholar
  4. 4.
    Blomqvist, P, Bell, RT, Olofssor, H, Stensdotter, U, Vrede, K 1995Plankton and water chemistry in Lake Njupfatet before and after limingCan J Fish Aquat Sci52551565Google Scholar
  5. 5.
    Box, H, Hunter, WG, Hunter, JS 1978Statistics for ExperimentersJohn Wiley & SonsNew YorkGoogle Scholar
  6. 6.
    Bratbak, G, Thingstad, TF 1985Phytoplankton–bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalismMar Ecol Prog Ser252330Google Scholar
  7. 7.
    Caron, DA, Lin Lim, E, Sanders, RW, Dennet, MR, Berninger, U-G 2000Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystemsAquat Microb Ecol22175184Google Scholar
  8. 8.
    Chrzanowski, TH, Sterner, RW, Elser, JJ 1995Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growthMicrob Ecol29221230CrossRefGoogle Scholar
  9. 9.
    Conover, WJ 1980Practical Nonparametric Statistics2John Wiley & SonsNew YorkGoogle Scholar
  10. 10.
    Cotner, JB, Ammerman, JW, Peele, ER, Bentzer, E 1997Phosphorus-limited bacterioplankton growth in the Sargasso SeaAquat Microb Ecol13141149Google Scholar
  11. 11.
    Cottrell, MT, Kirchman, DL 2000Natural assemblages of marine proteobacteria and members of the CytophagaFlavobacter cluster consuming low- and high-molecular-weight dissolved organic matterAppl Environ Microbiol6616921697CrossRefPubMedGoogle Scholar
  12. 12.
    Coveney, MF, Wetzel, RG 1995Biomass, production, and specific growth rate of bacterioplankton and coupling to phytoplankton in an oligotrophic lakeLimnol Oceanogr4011871200Google Scholar
  13. 13.
    Currie, DJ 1990Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorusLimnol Oceanogr3514371455Google Scholar
  14. 14.
    Giorgio, PA, Scarborough, G 1995Increase of the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and productionJ Plankton Res1719051924Google Scholar
  15. 15.
    Elser, JJ, Stable, BL, Hassett, PR 1995Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative studyAquat Microb Ecol9105110Google Scholar
  16. 16.
    Fagerbakke, KM, Heldal, M, Norland, S 1996Content of carbon, nitrogen, oxygen, sulphur and phosphorus in native aquatic and cultured bacteriaAquat Microb Ecol101527Google Scholar
  17. 17.
    Felip, M, Pace, ML, Cole, JJ 1996Regulation of planktonic bacterial growth rates: the effects of temperature and resourcesMicrob Ecol311528CrossRefGoogle Scholar
  18. 18.
    Fuchs, BM, Zubkoy, MV, Saham, K, Burkill, PH, Amann, R 2000Changes in community composition during dilution cultures of maine bacterioplankton as assessed by flow cytometric and molecular biological techniquesEnviron Microbiol2191201CrossRefPubMedGoogle Scholar
  19. 19.
    Goedkoop, W, Sonesten, L 1995Laborationsmanual för kemiska analyser av inlandsvatten och sediment [in Swedish]Scripta Limnologica Upsaliensia 1995B12Google Scholar
  20. 20.
    Grover, JP, Chrzanowski, TH 2000Seasonal patterns of substrate utilization by bacterioplankton: case studies in four temperate lakes of different latitudesAquat Microb Ecol234154Google Scholar
  21. 21.
    Gurung, TB, Urabe, J 1999Temporal and vertical differences in factors limiting growth rate of heterotrophic bacterial in Lake BiwaMicrob Ecol38136145CrossRefPubMedGoogle Scholar
  22. 22.
    Haglund, A-L, Törnblom, E, Boström, B, Tranvik, L 2002Large differences in the fraction of active bacteria in plankton, sediments, and biofilmsMicrob Ecol43232241CrossRefPubMedGoogle Scholar
  23. 23.
    Hessen, DO, Andersen, T, Lyche, A 1990Carbon metabolism in a humic lake: pool sizes and cycling through zooplanktonLimnol Oceanogr358499Google Scholar
  24. 24.
    Hessen, DO, Nygaard, K, Saloner, K, Vähätalo, A 1994The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakesEnviron Int206776CrossRefGoogle Scholar
  25. 25.
    Jansson, M, Blomqvist, P, Jonsson, A, Bergström, A-K 1996Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake ÖrträskLimnol Oceanogr4115521559Google Scholar
  26. 26.
    Lindström, ES, Vrede, K, Leskinen, E 2004Response of a member of the Verrucomicrobia, among the dominating bacteria in a hypolimnion, to increased phosphorus availabilityJ Plankton Res26241246CrossRefGoogle Scholar
  27. 27.
    Massana, R, Carlos, P-A, Casamayor, EO, Gasol, JM 2001Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parametersLimnol Oceanogr4611811188Google Scholar
  28. 28.
    Matz, C, Jürgens, K 2003Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial communityMicrob Ecol45384398CrossRefPubMedGoogle Scholar
  29. 29.
    Morris, DP, Lewis, WM,Jr 1992Nutrient limitation of bacterioplankton growth in Lake Dillon, ColoradoLimnol Oceanogr3711791192Google Scholar
  30. 30.
    Nedwell, DB 1999Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperatureFEMS Microb Ecol30101111CrossRefGoogle Scholar
  31. 31.
    Ochs, CA, Cole, JJ, Likens, GE 1995Population dynamics of bacterioplankton in an oligotrophic lakeJ Plankton Res17365391Google Scholar
  32. 32.
    Pace, ML, Cole, JJ 1996Regulation of bacteria by resources and predation tested in whole-lake experimentsLimnol Oceanogr4114481460Google Scholar
  33. 33.
    Pomeroy, LR, Wiebe, WJ 2001Temperature and substrates as interactive limiting factors for marine heterotrophic bacteriaAquat Microb Ecol23187204Google Scholar
  34. 34.
    Pomeroy, LR, Wiebe, WJ, Deibel, D, Thompson, JT, Rowe, GT, Pakulaski, JD 1991Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloomMar Ecol Prog Ser75143159Google Scholar
  35. 35.
    Posch, T, Loferer-Krößbacher, M, Gad, G, Alfreider, A, Pernthaler, J, Psenner, R 2001Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allomteric and linear volume-to-carbon conversion factorsAquat Microb Ecol255563Google Scholar
  36. 36.
    Sanders, RW, Porter, KG, Bennett, SJ, DeBiase, AE 1989Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic communityLimnol Oceanogr34673687Google Scholar
  37. 37.
    Schweitzer, B, Simon, M 1995Growth limitation of planktonic bacteria in a large mesotrophic lakeMicrob Ecol3089104CrossRefGoogle Scholar
  38. 38.
    Simon, M, Azam, F 1992Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implicationsMar Ecol Prog Ser86103110Google Scholar
  39. 39.
    Simon, M, Wünsch, C 1998Temperature control of bacterioplankton growth in a temperate large lakeAquat Microb Ecol16119130Google Scholar
  40. 40.
    Smith, EM, Prairie, YT 2004Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availabilityLimnol Oceanogr49137147Google Scholar
  41. 41.
    Søndergaard, M, Middelboe, M 1995A cross-system analysis of labile dissolved organic carbonMar Ecol Prog Ser118283294Google Scholar
  42. 42.
    Thingstad, TF, Zweife, UL, Rassoulzadegan, F 1998P limitation of heterotrophic bacteria and phytoplankton in the northwest MediterraneanLimnol Oceanogr438894Google Scholar
  43. 43.
    Toolan, T, Weh, JD, Findlay, S 1991Inorganic phosphorus stimulation of bacterioplankton production in a meso-eutrophic lakeAppl Environ Microbiol5720742078Google Scholar
  44. 44.
    Tulonen, T, Kankaala, P, Arvola, L, Ojala, A 2000Growth and production of bacterioplankton in a deep mesotrophic boreal lakeArch Hydrobiol147311325Google Scholar
  45. 45.
    Vadstein, O 2000Heterotrophic, planktonic bacteria and cycling of phosphorusPhosphorus requirements, competitive ability, and food web interactions. Adv Microb Ecol16115167Google Scholar
  46. 46.
    Vadstein, O, Olsen, LM, Busch, A, Andersen, T, Reinertsen, HR 2003Is phosphorus limitation of planktonic heterotrophic bacteria and accumulation of degradable DOC a normal phenomenon in phosphorus-limited systems? A microcosm studyFEMS Microb Ecol1556110Google Scholar
  47. 47.
    Vrede, K 1999Effects of inorganic nutrients and zooplankton on the growth of heterotrophic bacterioplankton—enclosure experiments in an oligotrophic clearwater lakeAquat Microb Ecol18133144Google Scholar
  48. 48.
    Vrede, K 1996Regulation of bacterioplankton production and biomass in an oligotrophic clearwater lake—the importance of the phytoplankton communityJ Plankton Res1810091032Google Scholar
  49. 49.
    Vrede, K, Heldal, M, Norland, S, Bratbak, G 2002The elemental composition (C, N, P) and cell volume of exponentially growing and nutrient limited bacterioplanktonAppl Environ Microbiol6829652971CrossRefPubMedGoogle Scholar
  50. 50.
    Vrede, K, Vrede, T, Isaksson, A, Karlsson, A 1999Effects of nutrients (P, N, C) and zooplankton on bacterioplankton and phytoplankton—a seasonal studyLimnol Oceanogr4416161624Google Scholar
  51. 51.
    Wang, L, Miller, TD, Priscu, JC 1992Bacterioplankton nutrient deficiency in a eutrophic lakeArch Hydrobiol125423439Google Scholar
  52. 52.
    Zar, JH 1984Biostatistical Analysis2Prentice HallUpper Saddle River, NJGoogle Scholar
  53. 53.
    Östling, T, Holqvist, L, Flärdh, K, Svenblad, B, Jouper-Jaan, Å, Kjelleberg, S 1993

    Starvation and recovery of Vibrio.

    Kjelleberg, S eds. Starvation in BacteriaPlenum PressNew York103127
    Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Limnology/Department of Ecology and Evolution, Evolutionary Biology CentreUppsala UniversitySweden

Personalised recommendations