Microbial Ecology

, Volume 49, Issue 1, pp 126–133

Characterization of a Facultative Endosymbiotic Bacterium of the Pea Aphid Acyrthosiphon pisum

  • T. Tsuchida
  • R. Koga
  • X.Y. Meng
  • T. Matsumoto
  • T. Fukatsu
Article

Abstract

The pea aphid U-type symbiont (PAUS) was investigated to characterize its microbiological properties. Fluorescence in situ hybridization (FISH) and electron microscopy revealed that PAUS was a rod-shaped bacterium found in three different locations in the body of the pea aphid Acyrthosiphon pisum: sheath cells, secondary mycetocytes, and hemolymph. Artificial transfer experiments revealed that PAUS could establish stable infection and vertical transmission when introduced into uninfected pea aphids. When 28 aphid species collected in Japan were subjected to a diagnostic PCR assay, four species of the subfamily Aphidinae (Aphis citricola, Aphis nerii, Macrosiphum avenae, and Uroleucon giganteus) and a species of the subfamily Pemphiginae (Colopha kansugei) were identified to be PAUS-positive. The sporadic incidences of PAUS infection without reflecting the aphid phylogeny can be best explained by occasional horizontal transfers of the symbiont across aphid lineages.

References

  1. 1.
    Amann, RI (1995) “In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes.” In: Akkermans, ADL, van Elsas, JD, de Bruijin, FJ (Eds.) Molecular Microbial Ecology Manual 3.3.6. Kluwer Academic Publishers, Dordrecht, pp 1–15Google Scholar
  2. 2.
    Blackman, RL, Eastop, VF 1994Aphids on the World’s TreesCAB InternationalWallingford, UKGoogle Scholar
  3. 3.
    Buchner, P 1965Endosymbiosis of Animals with Plant MicroorganismsInterscienceNew YorkGoogle Scholar
  4. 4.
    Chen, DQ, Campbell, BC, Purcell, AH 1996A new Rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris).Curr Microbiol33123128CrossRefPubMedGoogle Scholar
  5. 5.
    Chen, DQ, Purcell, AH 1997Occurrence and transmission of facultative endosymbionts in aphids.Curr Microbiol34220225CrossRefPubMedGoogle Scholar
  6. 6.
    Chen, DQ, Montllor, CB, Purcell, AH 2000Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi.Entomol Exp Appl95315323Google Scholar
  7. 7.
    Darby, AC, Birkle, LM, Turner, SL, Douglas, AE 2001An aphid-borne bacterium allied to the secondary symbionts of whitefly.FEMS Microbiol Ecol364350PubMedGoogle Scholar
  8. 8.
    Darby, AC, Douglas, AE 2003Elucidation of the transmission patterns of an insect-borne bacterium.Appl Environ Microbiol6944034407PubMedGoogle Scholar
  9. 9.
    Douglas, AE 1989Mycetocyte symbiosis in insects.Biol Rev64409434PubMedGoogle Scholar
  10. 10.
    Douglas, AE 1998Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera.Ann Rev Entomol431737Google Scholar
  11. 11.
    Folmer, O, Black, M, Hoeh, W, Lutz, R, Vrijenhoek, R 1994DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.Mol Mar Biol Biotechnol3294299PubMedGoogle Scholar
  12. 12.
    Fukatsu, T, Ishikawa, H 1993Occurrence of chaperonin 60 and chaperonin 10 in primary and secondary bacterial symbionts of aphids: implications for the evolution of an endosymbiotic system in aphids.J Mol Evol36568577PubMedGoogle Scholar
  13. 13.
    Fukatsu, T, Ishikawa, H 1998Differential immunohistochemical visualization of the primary and secondary intracellular symbiotic bacteria of aphids.Appl Entomol Zool33321326Google Scholar
  14. 14.
    Fukatsu, T, Watanabe, K, Sekiguchi, Y 1998Specific detection of intracellular symbiotic bacteria of aphids by oligonucleotide-probed in situ hybridization.Appl Entomol Zool33461472Google Scholar
  15. 15.
    Fukatsu, T 1999Acetone preservation: a practical technique for molecular analysis.Mol Ecol819351945PubMedGoogle Scholar
  16. 16.
    Fukatsu, T, Nikoh, N, Kawai, R, Koga, R 2000The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera).Appl Environ Microbiol6627482758PubMedGoogle Scholar
  17. 17.
    Fukatsu, T 2001Secondary intracellular symbiotic bacteria in aphids of the genus Yamatocallis (Homoptera: Aphididae: Drepanosiphinae).Appl Environ Microbiol6753155320PubMedGoogle Scholar
  18. 18.
    Fukatsu, T, Tsuchida, T, Nikoh, N, Koga, R 2001Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera).Appl Environ Microbiol6712841291PubMedGoogle Scholar
  19. 19.
    Hinde, R 1971The fine structure of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae and Macrosiphum rosae.J Insect Physiol1720352050PubMedGoogle Scholar
  20. 20.
    Houk, EJ, Griffiths, GW 1980Intracellular symbiotes of the Homoptera.Ann Rev Entomol25161187Google Scholar
  21. 21.
    Koga, R, Tsuchida, T, Fukatsu, T 2003Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid.Proc R Soc Lond B27025432550Google Scholar
  22. 22.
    Leonardo, TE, Muiru, GT 2003Facultative symbionts are associated with host plant specialization in pea aphid populations.Proc R Soc Lond B27052095212Google Scholar
  23. 23.
    Leonardo, TE 2004Removal of a specialization-associated symbiont does not affect aphid fitness.Ecol Let7461468Google Scholar
  24. 24.
    Montllor, CB, Maxmen, A, Purcell, AH 2002Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress.Ecol Entomol27189195Google Scholar
  25. 25.
    Moran, NA, Munson, MA, Baumann, P, Ishikawa, H 1993A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts.Proc R Soc Lond B253167171Google Scholar
  26. 26.
    Ohtaka, C, Ishikawa, H 1991Effects of heat treatment on the symbiotic system of an aphid mycetocyte.Symbiosis111930Google Scholar
  27. 27.
    Oliver, KM, Russell, JA, Moran, NA, Hunter, MS 2003Facultative bacterial symbionts in aphids confer resistance to parasitic wasps.Proc Natl Acad Sci USA10018031807PubMedGoogle Scholar
  28. 28.
    Russell, JA, Latorre, A, Sabater-Muñoz, B, Moya, A, Moran, NA 2003Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea.Mol Ecol1210611075PubMedGoogle Scholar
  29. 29.
    Sandström, JP, Russell, JA, White, JP, Moran, NA 2001Independent origins and horizontal transfer of bacterial symbionts of aphids.Mol Ecol10217228PubMedGoogle Scholar
  30. 30.
    Shigenobu, S, Watanabe, H, Hattori, M, Sakaki, Y, Ishikawa, H 2000Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS.Nature4078186PubMedGoogle Scholar
  31. 31.
    Simon, JC, Carré, S, Boutin, M, Prunier-Leterme, N, Sabater-Muñoz, B, Latorre, A, Bournoville, R 2003Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts.Proc R Soc Lond B27017031712Google Scholar
  32. 32.
    Tsuchida, T, Koga, R, Shibao, H, Matsumoto, T, Fukatsu, T 2002Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum.Mol Ecol1121232135PubMedGoogle Scholar
  33. 33.
    Tsuchida, T, Koga, R, Fukatsu, T 2004Host plant specialization governed by facultative symbiont.Science3031989PubMedGoogle Scholar
  34. 34.
    Unterman, BM, Baumann, P, McLean, DL 1989Pea aphid symbiont relationships established by analysis of 16S rRNAs.J Bacteriol17129702974PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • T. Tsuchida
    • 1
    • 2
  • R. Koga
    • 1
  • X.Y. Meng
    • 1
  • T. Matsumoto
    • 3
  • T. Fukatsu
    • 1
  1. 1.Institute for Biological Resources and Functions National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Department of BiologyUniversity of YorkYorkUK
  3. 3.Department of Life Sciences, Graduate School of Arts and SciencesUniversity of TokyoTokyoJapan

Personalised recommendations