Microbial Ecology

, Volume 50, Issue 1, pp 48–63 | Cite as

The Ecology of Testate Amoebae (Protists) in Sphagnum in North-western Poland in Relation to Peatland Ecology

  • Mariusz LamentowiczEmail author
  • Edward A. D. Mitchell


We studied the relationship between testate amoebae (Protozoa) communities and the depth to the water table (DWT), pH, conductivity, and microhabitat type in Sphagnum dominated peatlands of north-western Poland and built predictive (transfer function) models for inferring DWT and pH based on the testate amoebae community structure. Such models can be used for peatland monitoring and paleoecology. A total of 52 testate amoebae taxa were recorded. In a redundancy analysis, DWT and pH explained 20.1% of the variation in the species data and allowed us to identify three groups of taxa: species that are associated with (1) high DWT and low pH, (2) low DWT and low pH, and (3) high pH and mid-range DWT. Our transfer function models allow DWT and pH to be estimated with mean errors of 9.89 cm and 0.71 pH units. The prediction error of the DWT model and the tolerance of the species both increase with increasing dryness. This pattern mirrors the ecology of Sphagnum mosses: Species growing in wet habitats are more sensitive to change in water table depth than the species growing in drier microhabitats. Our results are consistent with studies of testate amoeba ecology in other regions, and they provide additional support for the use of these organisms in paleoecological and biomonitoring contexts.


Water Table Depth Transfer Function Model Weighted Average Testate Amoeba Ombrotrophic Mire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are indebted to Krystyna Szeroczyńska. Kazimierz Tobolski, Jaroslaw Pająkowski, and Ryszard Ortowski for allowing M.L. to perform SEM imaging and to Mirostaw Makohonienko for inspiration and discussions. We thank Jerry Kudenov and Keiko Kishaba, University of Alaska Anchorage, for providing the SEM illustration of Trigonopyxis arcula in Fig. 8. We also thank Łukasz Lamentowicz and Micha Woszczyk for their invaluable help in the field, as well as Matgorzata Suchorska for assistance in sample preparation.

This work is part of a research grant funded by the Polish Ministry of Scientific Research and Information Technology (No. 3 P04G 04323).


  1. 1.
    Barber, KE, Chambers, FM, Maddy, D 2003Holocene palaeoclimates from peat stratigraphy: macrofossil proxy climate records from three oceanic raised bogs in England and IrelandQuaternary Sci Rev22521539CrossRefGoogle Scholar
  2. 2.
    Barber, KE, Maddy, D, Rose, N, Stevenson, AC, Stoneman, R, Thompson, R 2000Replicated proxy-climate signals over the last 2000 yr from two distant UK peat bogs: new evidence for regional palaeoclimate teleconnectionsQuaternary Sc Rev19481487CrossRefGoogle Scholar
  3. 3.
    Beyens, L 1984A concise survey of the testate amoebae analysisBulle Belgi Vereniging Geolo93261266Google Scholar
  4. 4.
    Beyens, L, Chardez, D 1994On the habitat specificity of the testate amebas assemblages from Devon Island (NWT, Canadian Arctic), with the description of a new species—Difflugia ovalisinaArchi Protistenkunde144137142Google Scholar
  5. 5.
    Beyens, L, Chardez, D, Baere, D, Debock, P, Jacques, E 1990Ecology of terrestrial testate amoebae assemblages from coastal lowlands on Devon Island (NWT, Canadian Arctic)Polar Biol10431440CrossRefGoogle Scholar
  6. 6.
    Beyens, L, Chardez, D, De-Baere, D, Verbruggen, C 1995The aquatic testate amoebae fauna of the Stromness Bay areaSouth Georgia. Antarctic Sci738Google Scholar
  7. 7.
    Birks, HJB 1995Quantitative Palaeoenvironmental ReconstructionsBrew, JS eds. Statistical Modelling of Quaternary Science DataQuaternary Research AssociationLondon161254Google Scholar
  8. 8.
    Blackford, J 1993Peat bogs as sources of proxy climatic data: past approaches and future researchCharman, DJ eds. Climate change and human impact on the landscapeChapman and HallLondon4756Google Scholar
  9. 9.
    Blackford, J 2000Palaeoclimatic records from peat bogsTrends Ecol Evol15193198CrossRefPubMedGoogle Scholar
  10. 10.
    Bobrov, AA, Charman, DJ, Warner, BG 1999Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxaProtist150125136PubMedGoogle Scholar
  11. 11.
    Booth, RK 2001Ecology of testate amoebae (Protozoa) in two Lake Superior coastal wetlands: implications for paleoecology and environmental monitoringWetlands21564576Google Scholar
  12. 12.
    Booth, RK 2002Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibrationJ Paleolimnol28329348CrossRefGoogle Scholar
  13. 13.
    Booth, RK, Jackson, ST 2003A high resolution record of late-Holocene moisture variability from a Michigan raised bog, USAHolocene13863876CrossRefGoogle Scholar
  14. 14.
    Buttler, A, Warner, BG, Grosvenier, P, Matthey, Y 1996Vertical patterns of testate amoebae (Protozoa: Rhizopoda) and peat forming vegetation on cutover bogs in the Jura, SwitzerlandNew Phytologist134371382Google Scholar
  15. 15.
    Charman, DJ 1997Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlandsJ R Soc N Z27465483Google Scholar
  16. 16.
    Charman, DJ 2001Biostratigraphic and palaeoenvironmental applications of testate amoebaeQuaternary Sci Rev2017531764CrossRefGoogle Scholar
  17. 17.
    Charman, DJ, Brown, AD, Hendon, D, Karofeld, E 2004Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sitesQuaternary Sci Rev23137143CrossRefGoogle Scholar
  18. 18.
    Charman, DJ, Caseldine, C, Baker, A, Gearey, B, Hatton, J, Proctor, C 2001Paleohydrologicial records from peat profiles speleothems in Sutherland, Northwest ScotlandQuaternary Res55223234CrossRefGoogle Scholar
  19. 19.
    Charman, DJ, Hendon, D 2000Long-term changes in soil water tables over the past 4500 years: relationships with climate and North Atlantic atmospheric circulation and sea surface temperatureClimatic Chang474559CrossRefGoogle Scholar
  20. 20.
    Charman, DJ, Hendon, D, Woodland, WA. (2000) The identification of testate amoebae (Protozoa: Rhizopoda) in peats. QRA Technical Guide No. 9. London: Quaternary Research Association. 147 ppGoogle Scholar
  21. 21.
    Charman, DJ, Warner, BG 1992Relationship between testate amoebae (Protozoa, Rhizopoda) and microenvironmental parameters on a forested peatland in Northeastern OntarioCan J Zool-Rev Can Zool7024742482Google Scholar
  22. 22.
    Charman, DJ, Warner, BG 1997The ecology of testate amoebae (Protozoa: Rhizopoda) in oceanic peatlands in Newfoundland, Canada: modelling hydrological relationships for palaeoenyironmental reconstructionEcoscience4555562Google Scholar
  23. 23.
    Churski, T 1962Charakteryslyka geograficzna powiatu tucholskiegoWojtowicz, J eds. Tuchola, zarys monograficznyJ Towarzystwo Naukowe w ToruniuTorun718Google Scholar
  24. 24.
    Clarke, KJ 2003Guide to Identification of Soil Protozoa—Testate AmoebaeFreshwater Biological AssociationAmbleside, UKGoogle Scholar
  25. 25.
    Clymo, RS 1963Ion exchange in Sphagnum and its relation to bog ecologyAnn Bot27309324Google Scholar
  26. 26.
    Clymo, RS 1984Sphagnum-dominated peat bog—a naturally acid ecosystemPhil Trans R So Lond Ser B Biol Sci305487499Google Scholar
  27. 27.
    Deflandre, G 1929Le genre Centropyxis SteinArch Protistenkunde67322375Google Scholar
  28. 28.
    Deflandre, G 1936Etude monographique sur le genre Nebela LeidyAnn Protistologie5201286Google Scholar
  29. 29.
    Foissner, W 1987Soil protozoa: fundamental problems, ecological significance, adaptation in ciliates and testaceans, bioindicators, and guide to the literatureProg Protozool269212Google Scholar
  30. 30.
    Foissner, W 1999Soil protozoa as bioindicators: pros and cons, methods, diversity, representative examplesAgr Ecosystems Environ7495112CrossRefGoogle Scholar
  31. 31.
    Gilbert, D, Amblard, C, Bourdier, G, Francez, A-J 1998The microbial loop at the surface of a peatland: structure, function, and impact of nutrient inputMicrobial Ecol358393CrossRefGoogle Scholar
  32. 32.
    Grospietsch, T 1958Wechseltierchen (Rhizopoden)Kosmos VerlagSuttgartGoogle Scholar
  33. 33.
    Grosvernier, P, Matthey, Y, Buttler, A 1997Growth potential of three Sphagnum species in relation to water table level and peat properties with implications for their restoration in cut-over bogsJ Appl Ecol34471483Google Scholar
  34. 34.
    Hendon, D, Charman, DJ 2004High resolution peatland water table changes for the past 200 years: the influence of climate and implications for managementHolocene14125134CrossRefGoogle Scholar
  35. 35.
    Hendon, D, Charman, DJ, Kent, M 2001Palaeohydrological records derived from stestate amoebae analysis from peatlands in northern England: within-site variability, between-site comparability and palaeoclimatic implicationsHolocene11127148CrossRefGoogle Scholar
  36. 36.
    Hoogenraad, HR, de Groot, AA (1940) Zoetwaterrhizopoden en heliozoën. In: Sijthoff, AW (Ed.) Fauna von Nederland, Aflerering 9, Leiden, 303 pGoogle Scholar
  37. 37.
    Joosten, H, Clarke, D (2002) Wise Use of Mires and peatlands. Background and Principles Including a Framework for Decision-Making: International Mire Conservation Group and International Peat Society, Finland, 304 pGoogle Scholar
  38. 38.
    Kondracki, J 1998Geografia Regionalna PolskiPWNWarszawaGoogle Scholar
  39. 39.
    Kowalewski, G (2000) Antropogeniczne przeobrażenia środowiska przyrodniczego sandru Brdy w strefie oddziaływania Zbiornika Koronowskiego. Instytut Geografii Fizycznej i Kształtowania Środowiska Przyrodniczego. Zakład Geografii Fizycznej Kompleksowej i Teledetekcji. Poznań, Uniwersytet im. Adama Mickiewicza (PhD Thesis).Google Scholar
  40. 40.
    Kowalewski, G, Schubert, T, Tobolski, K 2002Geologia i historia niektórych torfowisk Tucholskiego Parku KrajobrazowegoRozga, B eds. Tucholski Park Krajobrazowy 1985–2000, stan poznaniaWydawnictwo Uniwersytetu LodzkiegoLodzGoogle Scholar
  41. 41.
    Legendre, P, Gallagher, ED 2001Ecologically meaningful transformations for ordination of species dataOecologia129271280CrossRefGoogle Scholar
  42. 42.
    Line, JM, Birks, HJB 1990WACALIB version 2.1—a computer program to reconstruct environmental variables from fossil assemblages by weighted averagingJ Paleolimnol3170173CrossRefGoogle Scholar
  43. 43.
    Line, JM, ter Braak, CJF, Birks, HJB 1994WACALIB version 3.3 — a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of predictionJ Paleolimnol10147152CrossRefGoogle Scholar
  44. 44.
    Mauquoy, D, Barber, K 2002Testing the sensitivity of the palaeoclimatic signal from ombrotrophic peat bogs in northern England and the Scottish BordersRev Palaeobo Palynol119219240CrossRefGoogle Scholar
  45. 45.
    Meisterfeld, R 1977Die horizontale und vertikale Verteilung der Testaceen (Rhizopoda: Testacea) in SphagnumArch Hydrobiolo79319356Google Scholar
  46. 46.
    Meisterfeld, R 1978Die Struktur von Testaceenzönosen (Rhizopoda, Testacea) in Sphagnum unter besonderer Berücksichtigung ihrer DiversitätVerh Ges Ökol7441450Google Scholar
  47. 47.
    Meisterfeld, R 1997Thekamöben—ihr Potential für Ökosystemforschung und Bioindikation. Abhandlungen und Berichte des NaturkundemuseumsGörlitz698795Google Scholar
  48. 48.
    Mitchell, EAD, Buttler, A, Grosvernier, P, Rydin, H, Albinsson, C, Greenup, AL, Heijmans, MMPD, Hoosbeek, MR, Saarinen, T 2000Relationships among testate amoebae (Protozoa), vegetation and water chemistry in five Sphagnum-dominated peatlands in EuropeNew Phytol14595106CrossRefGoogle Scholar
  49. 49.
    Mitchell, EAD, Buttler, AJ, Warner, BG, Gobat, JM 1999Ecology of testate amoebae (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and FranceEcoscience6565576Google Scholar
  50. 50.
    Mitchell, EAD Vander Knaap, WO van LeeuwenButtler, A, Warner, BG, Gobat, JM 2001The palaeoecological history of the Praz-Rodet bog (Swiss Jura) based on pollen, plant macrofossils and testate amoebae (Protozoa)Holocene116580CrossRefGoogle Scholar
  51. 51.
    Moraczewski, J 1961Testacea du littoral peu profond du lac Kisajno (Region des lacs de Mazurie)Pol Arch Hydrobiol9176194Google Scholar
  52. 52.
    Moraczewski, J 1962Differentiation ecologique de la faune des Testacés du littoral peu profond du lac MamryPol Arch Hydrobiol10334353Google Scholar
  53. 53.
    Nielsen, AB, Vad Odgard, B (2003) The use of historical analogues for interpreting fossil pollen records. Vegetation History and Archaeobotany (online publication)Google Scholar
  54. 54.
    Offierska, J 1984Zmiennosc skorupek u niektorych gatunkow pelzakow skorupkowych (Testacea) w Wielkopolskim Parku NarodowymBad Fizj Pol Zach Ser C34154162Google Scholar
  55. 55.
    Offierska-Wawrzyniak, J 1993Kopalne i wspolczesne korzenionozki skorupkowe (Testacea: Rhizopoda) torfowiska Skrzynka w Wielkopolskim Parku NarodowymBad Fizj Pol Zach Ser C31520Google Scholar
  56. 56.
    Ogden, CG, Hedley, RH 1980An Atlas to Freshwater Testate AmoebaeOxford University PressOxford, UK222Google Scholar
  57. 57.
    Patterson, RT, Barker, T, Burbidge, SM 1996Arcellaceans (thecamoebians) as proxies of arsenic and mercury contamination in northeastern Ontario lakesJ Foraminiferal Res26172183Google Scholar
  58. 58.
    Patterson, RT, Dalby, A, Kumar, A, Henderson, LA, Boudreau, REA 2002Arcellaceans (thecamoebians) as indicators of land-use change: settlement history of the Swan Lake area, Ontario as a case studyJ Paleolimnol28297316CrossRefGoogle Scholar
  59. 59.
    Rao, CR 1995A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distanceQüestiió192363Google Scholar
  60. 60.
    Rydin, H 1993Interspecific competition between Sphagnum mosses on a raised bogOikos66413423Google Scholar
  61. 61.
    Rydin, H, McDonald, AJS 1985Tolerance of Sphagnum to water levelJ Bryology13571578Google Scholar
  62. 62.
    Rydin, H, Sjörs, H, Löfroth, M 1999MiresActa Phytogeographica Suecica8491112Google Scholar
  63. 63.
    Schönborn, W 1965Die Sedimentbewohnenden Testaceen einiger Masurischer SeenActa Protdzool3297309Google Scholar
  64. 64.
    Schönborn, W 1966Testaceen als Bioindikatoren im System der Seetypen Untersuchungen in Masurischen Seen und im Suwalki-Gebiet (Polen)Limnologica4111Google Scholar
  65. 65.
    Scott, DB, Medioli, FS, Schafer, CT 2001Monitoring in Coastal Environments Using Foraminifera and Thecoamoebian IndicatorsCambridge Unversity PressCambridge, UKGoogle Scholar
  66. 66.
    Succow, M, Joosten, H 2002Landschaftsökologische MoorkundeStüttgartSweizerbart622 pGoogle Scholar
  67. 67.
    Tahvanainen, TE, Tuomaala, T 2003The reliability of mire water pH measurements—a standard sampling protocol and implications to ecological theoryWetlands23701708Google Scholar
  68. 68.
    Ter Braak, CJF (1988–1992) CANOCO — a FORTRAN program for Canonical Community Ordination (version 2.1). Ithaca, New York: Microcomputer Power. 96Google Scholar
  69. 69.
    Tobolski K, (2003) Torfowiska, na przykladzie Ziemi Świeckiej: Świecie, Towarzystwo Przyjaciół Dolnej Wisły, 255 pGoogle Scholar
  70. 70.
    Tolonen, K 1986 Rhizopod analysisBerglund, BE eds. Handbook of Holocene Palaeoecology and PalaeohydrologyJohn Wiley and SonsChichest UK645666Google Scholar
  71. 71.
    Tolonen, K, Warner, BG, Vasander, H 1992Ecology of testaceans (Protozoa, Rhizopoda) in mires in southern Finland1. Autecology. Arch Protistenkunde142119138Google Scholar
  72. 72.
    Tolonen, K, Warner, BG, Vasander, H 1994Ecology of testaceans (Protozoa, Rhizopoda) in mires in southern Finland .2, Multivariate-AnalysisArchi Protistenkunde14497112Google Scholar
  73. 73.
    Breemen, N 1995How Sphagnum bogs down other plantsTrends Ecol Evol10270275CrossRefGoogle Scholar
  74. 74.
    Vitt, D 1990Growth and production dynamics of boreal mosses over climatic, chemical, and topographic gradientsBot J Linn Soci1043559Google Scholar
  75. 75.
    Vitt, DH 2000Peatlands: ecosystems dominated by bryophytesGoffinet, B eds. Bryophyte BiologyCambrigde University PressCambrigde, UK312343Google Scholar
  76. 76.
    Warner, BG 1987Abundance and diversity or testate amoebae (Rhizopoda. Testacea) in Sphagnum peatlands in Southwestern OntarioCanada Archi Protistenkunde133173189Google Scholar
  77. 77.
    Warner, BG 1990Testate amoebae (Protozoa)Warner, BG eds. Methods in Quaternary EcologyGeoscience Canada, Geological Association of CanadaSt John’s Newfoundland6574Google Scholar
  78. 78.
    Wheeler, BD, Proctor, MCF 2000Ecological gradients, subdivisions and terminology of north-west European miresJ Ecolo88187203CrossRefGoogle Scholar
  79. 79.
    Wilmshurst, JM, Wiser, SK, Charman, DJ 2003Reconstructing Holocene water tables in New Zealand using testate amoebae; differential preservation of tests and implications for the use of transfer functionsHolocene136172CrossRefGoogle Scholar
  80. 80.
    Woodland, WA, Charman, DJ, Sims, PC 1998Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebaeHolocene8261273CrossRefGoogle Scholar
  81. 81.
    Woś, A 1999Climate of Poland (in Polish)Wydawnictwo Naukowe PWNWarszawaGoogle Scholar
  82. 82.
    Wójcik, G, Marciniak, K (1993) Opady atmosferyczne w regionie Dolnej Wisły w okresie 1951–1980. In: Churski, Z (Ed.), Uwarunkowania przyrodnicze i społeczno-ekonomiczne zagosodarowania Dolnej Wisły. IG UMK, ToruńGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biogeography and PalaeoecologyInstitute of Palaeogeography and Geo–ecology, Adam Mickiewicz University in PoznanPoznańPoland
  2. 2.Department of Biological SciencesUniversity of Alaska AnchorageAnchorageUSA
  3. 3.Laboratoire des Systèmes Écologi-que-ECOS-École Polytechnique Fédérale de Lausanne (EPFL), and Institut Féd´rale de Recherches WSLLausanneSwitzerland

Personalised recommendations