Microbial Ecology

, Volume 49, Issue 4, pp 590–597 | Cite as

Ontogenetic Development of the Gastrointestinal Microbiota in the Marine Herbivorous Fish Kyphosus sydneyanus

  • D MoranEmail author
  • S.J. Turner
  • K.D. Clements


Molecular techniques were used to investigate the composition and ontogenetic development of the intestinal bacterial community in the marine herbivorous fish Kyphosus sydneyanus from the north eastern coast of New Zealand. Previous work showed that K. sydneyanus maintains an exclusively algivorous diet throughout post-settlement life and passes through an ontogenetic diet shift from a juvenile diet which is readily digestible to an adult diet high in refractory algal metabolites. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to investigate the relationship between bacterial community structure and fish size. Bacterial diversity was higher in posterior gut sections than anterior gut sections, and in larger fish than in smaller fish. Partial sequencing of bacterial 16S rDNA genes PCR amplified and cloned from intestine content samples was used to identify the phylogenetic affiliation of dominant gastrointestinal bacteria. Phylogenetic analysis of clones showed that most formed a clade within the genus Clostridium, with one clone associated with the parasitic mycoplasmas. No bacteria were specific to a particular intestinal section or size class of host, though some appeared more dominant than others and were established in smaller fishes. Clones closely related to C. lituseburense were particularly dominant in most intestine content samples. All bacteria identified in the intestinal samples were phylogenetically related to those possessing fermentative type metabolism. Short-chain fatty acids in intestinal fluid samples increased from 15.6 ± 2.1 mM in fish <100 mm to 51.6 ± 5.5 mM in fish >300 mm. The findings of this study support the hypothesis that the ontogenetic diet shift of K. sydneyanus is accompanied by an increase in the diversity of intestinal microbial symbionts capable of degrading refractory algal metabolites into short-chain fatty acids, which can then be assimilated by the host.


Standard Length Terminal Restriction Fragment Length Polymorphism Terminal Restriction Fragment Length Polymorphism Analysis Terminal Restriction Fragment Length Polymorphism Profile Intestinal Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by a Marsden Grant from the Royal Society of New Zealand. We thank D. Mountfort for help with SCFA analysis, I. Pasch and C. Brown for assistance in the laboratory, D. Saul for assistance with the phylogenetic analysis, M. Birch and B. Doak for help in the field, and E. Angert for helpful comments on the manuscript.


  1. 1.
    Angert, ER, Brooks, AE, Pace, NR 1996Phylogenetic analysis of Metabacterium polyspora clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteriaJ Bacteriol17814511456PubMedGoogle Scholar
  2. 2.
    Angert, ER, Clements, KD, Pace, NR 1993The largest bacteriumNature362239241PubMedGoogle Scholar
  3. 3.
    Bjorndal, KA 1997Fermentation in reptile and amphibiansMackie, RIWhite, BI eds. Gastrointestinal MicrobiologyChapman and HallNew York199230Google Scholar
  4. 4.
    Brosius, J, Dull, TL, Sleeter, DD, Noller, HF 1981Gene organisation and primary structure of a ribosomal RNA operon fromEscherichia coliJ Mol Biol148107127PubMedGoogle Scholar
  5. 5.
    Clements, KD 1991Endosymbiotic communities of two herbivorous labroid fishes, Odax cyanomelas and Odax pullusMar Biol109223230CrossRefGoogle Scholar
  6. 6.
    Clements, KD 1997Fermentation and gastrointestinal microorganisms in fishesMackie, RIWhite, BI eds. Gastrointestinal MicrobiologyChapman and HallNew York156198Google Scholar
  7. 7.
    Clements, KD, Choat, JH 1993The influence of season, ontogeny and tide on the diet of the temperate marine herbivorous fish Odax pullus (Odacidae)Mar Biol117213220CrossRefGoogle Scholar
  8. 8.
    Clements, KD, Choat, JH 1995Fermentation in tropical marine herbivorous fishesPhysiol Zool68355378Google Scholar
  9. 9.
    Clements, KD, Choat, JH 1997Comparison of herbivory in the closely-related marine fish genera Girella and KyphosusMar Biol127579586CrossRefGoogle Scholar
  10. 10.
    Clements, KD, Glesson, VP, Slaytor, M 1994Short-chain fatty acid metabolism in temperate marine herbivorous fishJ Comp Physiol B164372377CrossRefGoogle Scholar
  11. 11.
    Clench, MH, Mathias, JR 1995The avian cecum: a reviewWilson Bull10793121Google Scholar
  12. 12.
    Cole, JR, Chai, B, Marsh, TL, Farris, RJ, Wang, Q, Kulam, SA, Chandra, S, McGarrell, DM, Schmidt, TM, Garrity, GM, Tiedje, JM 2003The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomyNucleic Acids Res31442443PubMedGoogle Scholar
  13. 13.
    Dunbar, J, Ticknor, LO, Kruske, CR 2001Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communitiesAppl Environ Microbiol67190197PubMedGoogle Scholar
  14. 14.
    Fishelson, L, Montgomery, WL, Myrberg, AAJ 1985A unique symbiosis in the gut of tropical herbivorous surgeonfish Acanthuridae teleostei from the Red SeaScience2294951Google Scholar
  15. 15.
    Hall, TA 1999BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NTNucl Acids Symp Ser419598Google Scholar
  16. 16.
    Holben, WE, Williams, P, Saarinen, M, Särkilahti, LK, Apajalahti, JHA 2002Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasmaphylotype in farmed and wild salmonMicrob Ecol44175185PubMedGoogle Scholar
  17. 17.
    Holt, JGKrieg, NRSneath, PHAStaley, JTWilliams, ST eds. 1994Bergey’s Manual of Determinative BacteriologyWilliams and WilkinsBaltimoreGoogle Scholar
  18. 18.
    Krause, DO, Dalrymple, BP, Smith, WJ, Mackie, RI, McSweeney, CS 199916S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciensdesign of a signature probe and its application in adult sheepMicrobiology14517971807PubMedGoogle Scholar
  19. 19.
    Marsh, TL, Saxman, P, Cole, J, Tiedje, J 2000Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysisAppl Environ Microbiol6636163620PubMedGoogle Scholar
  20. 20.
    Moran, D, Clements, KD 2002Diet and endogenous carbohydrases in the temperate marine herbivorous fishKyphosus sydneyanusJ Fish Biol6011901203CrossRefGoogle Scholar
  21. 21.
    Morée, MI, Herrick, JB, Silva, MC, Ghiorse, WC, Madsen, EL 1994Quantitative cell lysis of indigenous mircoorganisms and rapid extraction of microbial DNA from sedimentAppl Environ Microbiol6015721580PubMedGoogle Scholar
  22. 22.
    Mountfort, DO, Campbell, J, Clements, KD 2002Hindgut fermentation in three species of marine herbivorous fishAppl Environ Microbiol6813741380PubMedGoogle Scholar
  23. 23.
    Nelson, KE, Thonney, ML, Woolston, TK, Zinder, SH, Pell, AN 1998Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteriaAppl Environ Microbiol6438243830PubMedGoogle Scholar
  24. 24.
    Rake, AV 1972Isopropanol preservation of biological samples for subsequent DNA extraction and reassociation studiesAnal Biochem48365368PubMedGoogle Scholar
  25. 25.
    Rimmer, DW 1986Changes in diet and the development of microbial digestion in juvenile buffalo bream Kyphosus corneliiMar Biol92443448CrossRefGoogle Scholar
  26. 26.
    Rimmer, DW, Wiebe, WJ 1987Fermentative microbial digestion in herbivorous fishesJ Fish Biol31229236Google Scholar
  27. 27.
    Russell, JB, Rychlik, JL 2001Factors that alter rumen microbial ecologyScience29211191122PubMedGoogle Scholar
  28. 28.
    Stevens, CE, Hume, ID 1995Comparative Physiology of the Vertebrate Digestive System, 2nd edCambridge University PressNew YorkGoogle Scholar
  29. 29.
    Suzuki, MT, Giovannoni, SJ 1996Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCRAppl Environ Microbiol62625630PubMedGoogle Scholar
  30. 30.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The ClustalX-Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res2548764882CrossRefPubMedGoogle Scholar
  31. 31.
    Titus, E, Ahearn, GA 1988Short-chain fatty acid transport in the intestine of a herbivorous teleostJ Exp Biol1357794PubMedGoogle Scholar
  32. 32.
    Titus, E, Ahearn, GA 1991Transintestinal acetate transport in a herbivorous teleost anion exchange at the basolateral membraneJ Exp Biol1564162Google Scholar
  33. 33.
    Titus, E, Ahearn, GA 1992Vertebrate gastrointestinal fermentation: transport mechanisms for volatile fatty acidsAm J Physiol262R547R553PubMedGoogle Scholar
  34. 34.
    Wintzingerode, FV, Gobel, UB, Stackebrandt, E 1997Determination of microbial diversity on environmental samples: pitfalls of PCR-based rRNA analysisFEMS Microbiol Rev21213229PubMedGoogle Scholar
  35. 35.
    Zar, JH 1999Biostatistical Analysis, 4th edPrentice HallUpper Saddle River, NJGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of AucklandNew Zealand

Personalised recommendations