Advertisement

Microbial Ecology

, Volume 50, Issue 1, pp 29–39 | Cite as

Molecular Analysis of the Sulfate Reducing and ArchaealCommunity in a Meromictic Soda Lake (Mono Lake, California) by Targeting 16S rRNA, mcrA, apsA, and dsrAB Genes

  • J. C. M. Scholten
  • S. B. Joye
  • J. T. Hollibaugh
  • J. C.  Murrell
Article

Abstract

Sulfate reduction is the most important process involved in the mineralization of carbon in the anoxic bottom waters of Mono Lake, an alkaline, hypersaline, meromictic Lake in California. Another important biogeochemical process in Mono Lake is thought to be sulfate-dependent methane oxidation (SDMO). However little is known about what types of organisms are involved in these processes in Mono Lake. Therefore, the sulfate-reducing and archaeal microbial community in Mono Lake was analyzed by targeting 16S rRNA, methyl-coenzyme M reductase (mcrA), adenosine-5′-phosphosulfate (apsA), and dissimilatory sulfite reductase (dsrAB) genes to investigate the sulfate-reducing and archaeal community with depth. Most of the 16S rRNA gene sequences retrieved from the samples fell into the δ-subdivision of the Proteobacteria. Phylogenetic analyses suggested that the clones obtained represented sulfate-reducing bacteria, which are probably involved in the mineralization of carbon in Mono Lake, many of them belonging to a novel line of descent in the δ-Proteobacteria. Only 6% of the sequences retrieved from the samples affiliated to the domain Euryarchaeota but did not represent Archaea, which is considered to be responsible for SDMO [Orphan et al. 2001: Appl Environ Microbiol 67:1922–1934; Teske et al.: Appl Environ Microbiol 68:1994–2007]. On the basis of our results and thermodynamic arguments, we proposed that SDMO in hypersaline environments is presumably carried out by SRB alone. Polymerase chain reaction (PCR) amplifications of the mcrA-, apsA-, and dsrAB genes in Mono Lake samples were, in most cases, not successful. Only the PCR amplification of the apsA gene was partially successful. The amplification of these functional genes was not successful because there was either insufficient “target” DNA in the samples, or the microorganisms in Mono Lake have divergent functional genes.

Keywords

Clone Library Mono Lake Desulfotomaculum Anaerobic Methane Oxidation Polymerase Chain Reaction Amplification Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

J.C.M.S. and J.C.M. acknowledge support from the European Union (QLK3−CT-1999-51400); The contribution of S.B.J. and J.T.H. to this study was supported by the US National Science Foundation (MCB 99-77886).

References

  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. 2.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieske A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic methane oxidation. Nature 407:623–626CrossRefPubMedGoogle Scholar
  3. 3.
    Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica, Environ Microbiol 2:227–237CrossRefPubMedGoogle Scholar
  4. 4.
    Daly K, Sharp RJ, McCarthy AJ (2000) Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiology 146:1693–1705PubMedGoogle Scholar
  5. 5.
    DeLong EF 1992 Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689PubMedGoogle Scholar
  6. 6.
    DeLong EF, Wu KY, Prézelin BB, Jovine RVM (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695–697CrossRefPubMedGoogle Scholar
  7. 7.
    Derakshani M, Lukow T, Liesack W (2001) Novel bacterial lineages at the (sub)division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl Environ Microbiol 67:623–631CrossRefPubMedGoogle Scholar
  8. 8.
    Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218CrossRefPubMedGoogle Scholar
  9. 9.
    Friedrich MW (2002) Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184:278–289CrossRefPubMedGoogle Scholar
  10. 10.
    Fuhrman JA, Davis AA (1997) Widespread Archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285Google Scholar
  11. 11.
    Groβkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969PubMedGoogle Scholar
  12. 12.
    Groβkopf R, Stubner S, Liesack W (1998) Novel Euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989PubMedGoogle Scholar
  13. 13.
    Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675PubMedGoogle Scholar
  14. 14.
    Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming Archaebacteria in marine sediments. Nature 398:802–805CrossRefPubMedGoogle Scholar
  15. 15.
    Hinrichs K-U, Summons RE, Orphan V, Sylva SP, Hayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Chem 31:1685–1701Google Scholar
  16. 16.
    Humayoun SH, Bane N, Hollibaugh JT (2003) Depth distribution of microbial diversity in a meromictic soda lake; Mono Lake in California. Appl Environ Microbiol 69:1030–1042Google Scholar
  17. 17.
    Jellison R, Melack JM (1993) Meromixis in hypersaline Mono Lake, California. 1. Vertical mixing and density stratification during the onset, persistence, and breakdown of meromixis. Limnol Oceanogr 38:1008–1019Google Scholar
  18. 18.
    Jellison R, Miller LG, Melack JM, Dana GL (1993) Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnol Oceanogr 38:1020–1039Google Scholar
  19. 19.
    Joye SB, Connell TL, Miller LG, Oremland RS, Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44:178–188Google Scholar
  20. 20.
    Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles 1:117–123CrossRefPubMedGoogle Scholar
  21. 21.
    Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183:6028–6035CrossRefPubMedGoogle Scholar
  22. 22.
    Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Böcher, Thauer RK, Shima S (2004) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881CrossRefGoogle Scholar
  23. 23.
    Liu Y, Boone DR, Choy C (1990) Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 40:111–116Google Scholar
  24. 24.
    Ludwig L, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phytogeny based comparative sequence analysis. Electrophoresis 19:554–568CrossRefPubMedGoogle Scholar
  25. 25.
    Lueders T, Chin K-J, Conrad R, Friedrich M (2001) Molecular analyses of methyl-coenzyme M reductase α-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204CrossRefPubMedGoogle Scholar
  26. 26.
    Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara channel. Appl Environ Microbiol 63:50–56PubMedGoogle Scholar
  27. 27.
    Melack JM, Jellison R (1998) Limnological conditions in Mono Lake: contrasting monomixis and meromixis in the 1990s. Hydrobiologia 384:21–39CrossRefGoogle Scholar
  28. 28.
    Miller LG, Jellison R, Oremland RS, Culbertson CW (1993) Meromixis in hypersaline Mono Lake, California. 3. Biogeochemical response to stratification and overturn. Limnol Oceanogr 38:1040–1051Google Scholar
  29. 29.
    Munson MA, Nedwell DB, Embley TM (1997) Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl Environ Microbiol 63:4729–4733PubMedGoogle Scholar
  30. 30.
    Oremland RS, Dowdle PR, Hoeft S, Sharp JO, Schaefer JK, Miller LG, Switzer Blum J, Smith RL, Bloom NS, Wallschlaeger D (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California 64:3073–3083Google Scholar
  31. 31.
    Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:34–338PubMedGoogle Scholar
  32. 32.
    Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, DeLong EF (2001) Comparative analysis of methane-oxidizing Archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934CrossRefPubMedGoogle Scholar
  33. 33.
    Pikuta EV, Zhilina TN, Zavarzin GA, Kostrikina NA, Osipov GA, Rainey FA (1998) Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Mikrobiologiya 67:123–131Google Scholar
  34. 34.
    Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P (2003) Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332CrossRefPubMedGoogle Scholar
  35. 35.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, New York, Cold Spring Harbor LaboratoryGoogle Scholar
  36. 36.
    Saunders SE, Burke JF (1990) Rapid isolation of miniprep DNA for double strand sequencing. Nucleic Acids Res 18:4948PubMedGoogle Scholar
  37. 37.
    Scholten JCM, Stams AJM (2000) Isolation and characterization of acetate-utilizing anaerobes from a freshwater sediment. Microb. Ecol. 40:292–299PubMedGoogle Scholar
  38. 38.
    Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007CrossRefPubMedGoogle Scholar
  39. 39.
    Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656CrossRefPubMedGoogle Scholar
  40. 40.
    Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484CrossRefPubMedGoogle Scholar
  41. 41.
    Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982PubMedGoogle Scholar
  42. 42.
    Zepp Falz K, Holliger C, Großkopf R, Liesack W, Nozhevnikova AN, Müller B, Wehrli B, Hahn D (1999) Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Appl Environ Microbiol 65:2402–2408PubMedGoogle Scholar
  43. 43.
    Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • J. C. M. Scholten
    • 1
    • 3
  • S. B. Joye
    • 2
  • J. T. Hollibaugh
    • 2
  • J. C.  Murrell
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK
  2. 2.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  3. 3.Pacific Northwest National LaboratoryRichland

Personalised recommendations