Advertisement

Microbial Ecology

, Volume 49, Issue 3, pp 451–460 | Cite as

Biogeographic and Quantitative Analyses of Abundant Uncultivated γ-Proteobacterial Clades from Marine Sediment

  • J.P. BowmanEmail author
  • S.A. McCammon
  • A.L. Dann
Article

Abstract

16S rRNA gene-based molecular analyses revealed the presence of several large and so far uncultivated clades within class γ-Proteobacteria, designated γ-proteobacterial marine sediment (GMS) clades 1 to 4, in marine sediment. The GMS clades appear only indigenous to marine sediment and so far have an unknown functionality. SYBR Green–based real-time PCR analyses using GMS clade-specific primers indicated GMS clades were a significant part of the bacterial community (0.3–8.7% of total 16S rRNA genes) in both polar and temperate marine sediment samples. Univariate statistical analyses indicated that GMS clade communities were indistinguishable in two temperate coastal sediment samples even though these possessed very different mean grain sizes, organic contents, and organic loading rates. GMS clade communities were slightly different (p < 0.05) between polar and temperate sites, suggesting that psychrophilic adaptation among GMS clade taxa corresponds only to subtle phylogenetic differences. Similar levels of difference were also observed through a sediment core reflecting that through the sediment core history, which spanned ∼3000 years, GMS clonal diversity shifted only marginally.

Keywords

Clone Library Marine Sediment Sample Surface Marine Sediment Maximum Likelihood Distance Core 10GC01 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Support for this study came from University of Tasmania IRGS funding (grant no. B0013108) and from the Australian Research Council funds (grant no. F09905711). We thank Andrew Bissett for the Tasmanian sediment DNA samples and Catriona MacLeod for access to the Primer 5 program.

References

  1. 1.
    Anderson, JP, Learn, GH, Rodrigo, AG, He, X, Wang, Y, Weinstock, H, Kalish, ML, Robbins, KE, Hood, L, Mullins, JI 2003Predicting demographic group structures based on DNA sequence dataMol Biol Evol2011681180Google Scholar
  2. 2.
    Anderson MJ (2003) CAP: A FORTRAN computer program for canonical analysis of principle coordinates. Department of Statistics, University of Auckland, Auckland, New ZealandGoogle Scholar
  3. 3.
    Bowman, JP, Rea, SM, McCammon, SA, McMeekin, TA 2000Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern AntarcticaEnviron Microbiol2227237Google Scholar
  4. 4.
    Bowman, JP, McCammon, SA, Gibson, JAE, Nichols, PD, Robertson, L 2003Microbial metabolic activity and community structure within Antarctic continental shelf sedimentAppl Environ Microbiol6924482462Google Scholar
  5. 5.
    Bowman, JP, McCuaig, RM 2003Diversity and biogeography of prokaryotes dwelling in Antarctic continental shelf sedimentAppl Environ Microbiol6924632484Google Scholar
  6. 6.
    Campbell, BJ, Jeanthon, C, Kostka, JE, Luther, GW, Cary, SC 2001Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal ventsAppl Environ Microbiol6745664572Google Scholar
  7. 7.
    Chapman, MG, Underwood, AJ 1999Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM testsMar Ecol Prog Ser180257265Google Scholar
  8. 8.
    Cifuentes, A, Anton, J, Benlloch, S, Donnelly, A, Herbert, RA, Rodriguez-Valera, F 2000Prokaryotic diversity in Zostera noltii-colonized marine sedimentsAppl Environ Microbiol6617151719Google Scholar
  9. 9.
    Clarke, KR, Ainsworth, M 1993A method of linking multivariate community structure to environmental variablesMar Ecol Prog Ser46213226Google Scholar
  10. 10.
    Clarke, KR, Warwick, RM 2001Change in Marine Communities: An Approach to Statistical Analysis and Interpretation2Primer-E Ltd.Plymouth, UK(http://www.pml.ac.uk/primer/)Google Scholar
  11. 11.
    Crawford, CM, Mitchell, IM, MacLeod, CKA 2001Video assessments of environmental impacts of salmon farmsICES J Mar Sci58445452Google Scholar
  12. 12.
    Dann, AL (2003) Honours thesis. School of Agricultural Science, University of Tasmania, AustraliaGoogle Scholar
  13. 13.
    Ehrlich, PR, Ehrlich, AH 1981Extinction. The Causes and Consequences of the Disappearance of SpeciesRandom HouseNew YorkGoogle Scholar
  14. 14.
    Felsenstein, J (1993) PHYLIP, phylogenetic inference package. http://evolution.genetics.washington.edu/phylip.html
  15. 15.
    Hall, TA 1999A user-friendly biological sequence alignment editor for Windows 95/98/NTNucleic Acids Symp Ser419598Google Scholar
  16. 16.
    Harris, PT, Brancolini, G, Armand, L, Busetti, M, Beaman, RJ, Giorgetti, G, Presti, M, Trincardi, F 2001Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the HoloceneMar Geol17918Google Scholar
  17. 17.
    Inagaki, F, Sakihama, Y, Inoue, A, Kato, C, Horikoshi, K 2002Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sedimentsEnviron Microbiol4277286Google Scholar
  18. 18.
    Kemp, PK, Aller, JY 2004Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell usFEMS Microbiol Ecol47161177Google Scholar
  19. 19.
    Kenkel, NC, Orloci, L 1986Applying metric and nonmetric multidimensional scaling to some ecological studies: some new resultsEcology67919928Google Scholar
  20. 20.
    Kruskal, JB 1964Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesisPsychometrika29127Google Scholar
  21. 21.
    Lane, DJ 199116S/23S rRNA sequencingStackebrandt, EGoodfellow, M eds. Nucleic Acid Techniques in Bacterial SystematicsJohn Wiley & SonsNew York115175Google Scholar
  22. 22.
    Legendre, P, Anderson, MJ 1999Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experimentsEcol Monogr69124Google Scholar
  23. 23.
    Li, L, Kato, C, Horikoshi, K 1999Bacterial diversity in deep-sea sediments from different depthsBiodivers Conserv8659677Google Scholar
  24. 24.
    Li, L, Kato, C, Horikoshi, K 1999Microbial diversity in sediments collected from the deepest cold-seep area, the Japan TrenchMar Biotechnol1391400Google Scholar
  25. 25.
    Lopez-Garcia, P, Duperron, S, Philippot, P, Foriel, J, Susini, J, Moreira, D 2003Bacterial diversity in hydrothermal sediment and epsilon proteobacterial dominance in experimental microcolonizers at the Mid-Atlantic RidgeEnviron Microbiol5961976Google Scholar
  26. 26.
    Macleod, C, Bissett, A, Burke, C, Connell, R, Holdsworth, D, Forbes, S, Nichols, P, Revill, A, Volkman, J (2004) Development of novel methods for the assessment of sediment condition and determination of management protocols for sustainable finfish cage aquaculture operations. FRDC Report 2000/164; Aquafin CRC Report 4.1Google Scholar
  27. 27.
    Madrid, VM, Alter, JY, Aller, RC, Chistoserdov, AY 2001High prokaryote diversity and analysis of community structure in mobile mud deposits off French Guiana: identification of two new bacterial candidate divisionsFEMS Microbiol Ecol37197209Google Scholar
  28. 28.
    O’Mahony, J, Hill, C 2002A real time PCR assay for the detection and quantitation of Mycobacterium avium subsp. paratuberculosis using SYBR Green and the Light CyclerJ Microbiol Methods51283293Google Scholar
  29. 29.
    Powell, SM, Bowman, JP, Snape, I, Stark, JS 2003Microbial community variation in pristine and polluted nearshore Antarctic sedimentsFEMS Microbiol Ecol45135145Google Scholar
  30. 30.
    Purdy, KJ, Embley, TM, Takii, S, Nedwell, DB 1996Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column methodAppl Environ Microbiol6239053907Google Scholar
  31. 31.
    Rappé, MS, Kemp, PF, Giovannoni, SJ 1997Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, N.CLimnol Oceanogr42811826Google Scholar
  32. 32.
    Ravenschlag, K, Sahm, K, Pernthaler, J, Amann, R 1999High bacterial diversity in permanently cold marine sedimentsAppl Environ Microbiol6539823989Google Scholar
  33. 33.
    Ravenschlag, K, Sahm, K, Knoblauch, C, Jørgensen, BB, Amann, R 2000Community structure, cellular rRNA content, and activity of sulphate-reducing bacteria in marine Arctic sedimentsAppl Environ Microbiol6635923602Google Scholar
  34. 34.
    Ravenschlag, K, Sahm, K, Amann, R 2001Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard)Appl Environ Microbiol67387395Google Scholar
  35. 35.
    Ronquist, F, Huelsenbeck, JP 2003MrBayes 3: Bayesian phylogenetic inference under mixed modelsBionformatics1915721574Google Scholar
  36. 36.
    Stark, JS, Riddle, MJ, Snape, I, Scouller, RC 2003Human impacts in Antarctic marine soft-sediment assemblages: correlations between multivariate biological patterns and environmental variablesEstuarine Coastal Shelf Sci56717734Google Scholar
  37. 37.
    Takai, K, Inagaki, F, Nakagawa, S, Hirayama, H, Nunoura, T, Sako, Y, Nealson, KH, Horikoshi, K 2003Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fieldsFEMS Microbiol Lett218167174Google Scholar
  38. 38.
    Teske, A, Hinrichs, KU, Edgcomb, V, Vera Gomez, A, Kysela, D, Sylva, SP, Sogin, ML, Jannasch, HW 2002Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communitiesAppl Environ Microbiol6819942007Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.School of Agricultural ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations