Microbial Ecology

, Volume 49, Issue 3, pp 474–485 | Cite as

Different Marine Heterotrophic Nanoflagellates Affect Differentially the Composition of Enriched Bacterial Communities

  • E. Vázquez-DomínguezEmail author
  • E.O. Casamayor
  • P. Català
  • P. Lebaron


We studied the effects of predation on the cytometric and phylogenetic features of two enriched bacterial communities obtained from two cultures of marine heterotrophic nanoflagellates: Jakoba libera and a mixed culture of Cafeteria sp. and Monosiga sp. Protists were harvested by flow cytometric cell sorting and eight different treatments were prepared. Each bacterial community was incubated with and without protists, and we added two treatments with protists and the bacteria present after the sorting procedure (cosorted bacteria). The bacterial community derived from the culture of Jakoba libera had higher green fluorescence per cell (FL1) than that derived from the mixed culture of Cafeteria sp. and Monosiga sp. When the experiment began all treatments presented bacterial communities that increase in fluorescence per bacterium (FL1); after that the FL1 decreased when bacteria attained maximal concentrations; and, finally, there was a new increase in FL1 toward the end of the experiment. Cosorted bacteria of Jakoba libera had the same fluorescence as the bacterial community derived from this protist, while the bacteria derived from the mixed culture of Cafeteria sp. and Monosiga sp. was nearly twice as fluorescent than that of the parental community. All treatments presented a general decline of SSC along the incubation. Therefore, there was a small influence of protists on the cytometric signature of each bacterial community. However, each bacterial community preyed by Jakoba libera or the mixed culture of Cafeteria sp. and Monosiga sp. led to four different phylogenetic fingerprint. Besides, the final Communities were different from the fingerprint of controls without protists, and most of them diverge from the fingerprint of cosorted bacteria. Our results confirm that changes in the phylogenetic composition of marine bacterial communities may depend on the initial communities of both bacteria and protists.


Bacterial Community Bacterial Abundance Bacterial Community Composition Sorting Procedure Viral Abundance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by the EU project AIRWIN (EVK3-CT2000-00030). E.V.-D. was supported by PF0036895749 (MCYT) and is currently supported by RED 2002–2003 (AGAUR), and EOC is currently supported by the “Ramón y Cajal” program (MCYT). Paul Del Giorgio and Eva Sintes offered helpful improvements. Paul Del Giorgio kindly provided Jakoba libera and Lysotracker Green, while Cristine Dupuy provided the culture of Uronema marinum. J.M. Fortuño helped with the scanning microscopy preparations, and D.J. Patterson and A.P. Mylnikok determined the genus of mixed nanoflagellates. Finally, we especially acknowledge the staff of Horn Point (University of Maryland) and Aragó Laboratories (University of Paris VI, France), and Sandrine Lacroix, Lucía, and Rocío.


  1. 1.
    Azam, F, Fenchel, T, Field, JG, Gray, JS, Meyer-Reil, LA, Thingstad, F 1983The ecological role of water-column microbes in the seaMar Ecol Prog Ser10257263Google Scholar
  2. 2.
    Boenigk, J, Arndt, H 2000Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasutaMar Ecol Prog Ser22243249Google Scholar
  3. 3.
    Boenigk, J, Arndt, H 2002Bacterivory by heterotrophic flagellates: community structure and feeding strategiesAntonie van Leeuwenhoek81465480Google Scholar
  4. 4.
    Boenigk, J, Matz, C, Jürgens, K, Arndt, H 2002Food concentration-dependent regulation of food selectivity on interception-feeding bacterivorous nanoflagellatesAquat Microb Ecol27195202Google Scholar
  5. 5.
    Bouvier, TC, Giorgio, PA 2002Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuariesLimnol Oceanogr47453470Google Scholar
  6. 6.
    Casamayor, EO, Massana, R, Benlloch, S, Øvreås, L, Díez, B, Goddard, V, Gasol, JM, Joint, I, Rodríguez-Valera, F, Pedrós-Alió, C 2002Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multi-pond solar salternEnviron Microbiol4338348Google Scholar
  7. 7.
    Casamayor, EO, Pedrós-Alió, C, Muyzer, G, Amann, R 2002Microheterogeneity in 16S rDNA-defined bacterial populations from a stratified planktonic environment is related to temporal changes and to ecological adaptationsAppl Environ Microbiol6817061714Google Scholar
  8. 8.
    Casamayor, EO, Schäfer, H, Bañeras, L, Pedrós-Alió, C, Muyzer, G 2000Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresisAppl Environ Microbiol66499508Google Scholar
  9. 9.
    Cynar, FJ, Estep, KW, Sieburth, JM 1985The detection and characterization of bacteria-sized protist in “protist-free” filtrates and their potential impact on experimental marine ecologyMicrob Ecol11281288Google Scholar
  10. 10.
    Giorgio, PA, Scarborough, G 1995Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and productions ratesJ Plankton Res1719051925Google Scholar
  11. 11.
    Giorgio, PA, Gasol, JM, Vaqué, D, Mura, PM, Agustí, S, Duarte, CM 1996Bacterioplankton community structure: protist control net production and the proportion of active bacteria in a coastal marine communityLimnol Oceanogr4111691179Google Scholar
  12. 12.
    Dumestre, J-F, Casamayor, EO, Massana, R, Pedrós-Alió, C 2002Changes in bacterial and archaeal assemblages in an equatorial river induced by the water eutrophication of Petit Saut dam reservoir (French Guiana)Aquat Microb Ecol26209221Google Scholar
  13. 13.
    Fenchel, T 1982Ecology of heterotrophic microflagellates. IV. Quantitative occurence and importance as bacterial consumersMar Ecol Prog Ser93542Google Scholar
  14. 14.
    Fuhrman, JA 1999Marine viruses and their biogeochemical and ecological effectsNature399541548Google Scholar
  15. 15.
    Gasol, JM, Giorgio, PA 2000Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communitiesSci Mar64197224Google Scholar
  16. 16.
    Glökner, FO, Fuchs, BM, Amann, R 1999Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescene in situ hybridizationAppl Environ Microbiol6537213726Google Scholar
  17. 17.
    González, JM, Sherr, EB, Sherr, BF 1993Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile, bacterial preyMar Ecol Prog Ser102257267Google Scholar
  18. 18.
    Hahn, MW, Höfle, MG 1998Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans PX 54 and a Vibrio strain CB5 in chemostat coculturesAppl Environ Microbiol6419101918Google Scholar
  19. 19.
    Hahn, MW, Höfle, MG 2001Grazing of protozoa and its effect on populations of aquatic bacteriaFEMS Microb Ecol35113121Google Scholar
  20. 20.
    Hahn, MW, Moore, ERB, Höfle, MG 1999Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phylaAppl Environ Microbiol652535Google Scholar
  21. 21.
    Hahn, MW, Moore, ERB, Höfle, MG 2000Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas spMWH1. Microb Ecol39175185Google Scholar
  22. 22.
    Höfle, MG, Haas, H, Dominik, K 1999Seasonal dynamics of bacterioplancton community structure in an eutrophic lake as determined by 5s rRNA analysisAppl Environ Microbiol6531643174Google Scholar
  23. 23.
    Jürgens, K, Güde, H 1994The potential importance of grazing-resistant bacteria in planktonic systemsMar Ecol Prog Ser112169188Google Scholar
  24. 24.
    Jürgens, K, Matz, C 2002Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteriaAnt van Leeuwen81413434Google Scholar
  25. 25.
    Jürgens, K, Gasol, JM, Vaque, D 2000Bacteria–flagellate coupling in microcosms experiments in the Central AtlanticJ Exp Mar Biol Ecol245127147Google Scholar
  26. 26.
    Kirchman, DL, Yu, L, Fuchs, BM, Amann, R 2001Structure of bacterial communities in aquatic systems as revealed by filter PCRAquat Microb Ecol261322Google Scholar
  27. 27.
    Langenheder, S, Jürgens, K 2001Regulation of bacterial biomass and community structure by metazoan and protozoan predationLimnol Oceanogr46121134Google Scholar
  28. 28.
    Lebaron, P, Parthuisot, N, Catala, P 1998Comparison blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systemsAppl Environ Microbiol6417251730Google Scholar
  29. 29.
    Lebaron, P, Servais, P, Agogué, H, Courties, C, Joux, F 2001Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol6717751782Google Scholar
  30. 30.
    Lebaron, P, Servais, P, Baudoux, A-C, Bourrain, M, Courties, C, Parthuisot, N 2002Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometryAquat Microb Ecol28131140Google Scholar
  31. 31.
    Lebaron, P, Servais, P, Troussellier, M, Courties, C, Vives-Rego, J, Muyzer, G, Bernard, L, Guindulain, T, Schaefer, H, Stackebrandt, E 1999Changes in bacterial community structure in seawater mesocosms differing in their nutrient statusAquat Microb Ecol19255267Google Scholar
  32. 32.
    Marie, D, Partensky, F, Jacket, S, Vaulot, D 1997Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid strain SYBR Green IAppl Environ Microbiol63186193Google Scholar
  33. 33.
    Massana, R, Jürgens, K 2003Composition and population dynamics of planktonic bacteria and bacterivorous flagellates in seawater chemostat culturesAquat Microb Ecol321122Google Scholar
  34. 34.
    Massana, R, Guillou, L, Díez, B, Pedrós-Alió, C 2002Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the oceanAppl Environ Microbiol6845544558Google Scholar
  35. 35.
    Massana, R, Pedrós-Alió, C, Casamayor, EO, Gasol, JM 2001Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parametersLimnol Oceanogr4611811188Google Scholar
  36. 36.
    Moreira, D, López-Garcia, P 2002The molecular ecology of microbial eukaryotes unveils a hidden worldTrends Microbiol103138Google Scholar
  37. 37.
    Noble, RT, Fuhrman, JA 1998Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteriaAquat Microb Ecol14113118Google Scholar
  38. 38.
    Patterson, DJ 1990Jakoba libera (Ruinen, 1938), a heterotrophic flagellate from deep oceanic sedimentsMar Biol Assoc UK70381393Google Scholar
  39. 39.
    Pernthaler, J, Posch, T, Simek, K, Vrba, J, Amann, R, Psenner, R 1997Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblageAppl Environ Microbiol63596601Google Scholar
  40. 40.
    Pernthaler, J, Posch, T, Simek, K, Vrba, J, Pernthaler, A, Gloeckner, FO, Nuebel, U, Psenner, R, Amann, R 2001Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous cultureAppl Environ Microbiol6721452155Google Scholar
  41. 41.
    Pomeroy, LR, Wiebe, WJ 2001Temperature and substrates as interactive limiting factors for marine heterotrophic bacteriaAquat Microb Ecol23187204Google Scholar
  42. 42.
    Porter, KG, Feig, YS 1980The use of DAPI for identifying and counting aquatic microfloraLimnol Oceanogr25943948Google Scholar
  43. 43.
    Rønn, R, McCaig, AE, Griffiths, BS, Prosser, JI 2002Impact of protozoan grazing on bacterial community structure in soil microcosmsAppl Environ Microbiol6860946105Google Scholar
  44. 44.
    Rose, JM, Caron, DA, Sieracki, ME, Poulton, N 2004Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometryAquat Microb Ecol34263277Google Scholar
  45. 45.
    Schäfer, H, Abbas, B, Witte, H, Muyzer, G 2002Genetic diversity of “satellite” bacteria present in cultures of marine diatomsFEMS Microb Ecol422535Google Scholar
  46. 46.
    Servais, P, Casamayor, EO, Courties, C, Catala, P, Parthuisot, N, Lebaron, P 2003Activity and diversity of bacterial cells with high and low nucleic acid contentAquat Microb Ecol334151Google Scholar
  47. 47.
    Servais, P, Courties, C, Lebaron, P, Troussellier, M 1999Coupling bacterial activity measurements with cell sorting by flow cytometryMicrob Ecol35171179Google Scholar
  48. 48.
    Sherr, E, Sherr, B 1988Role of microbes in pelagic food webs: a revised conceptLimnol Oceanogr3312251227Google Scholar
  49. 49.
    Sherr, E, Sherr, B 2002Significance of predation by protists in aquatic microbial food websAnt van Leeuwen81293308Google Scholar
  50. 50.
    Sherr, EB, Rassoulzadegan, F, Sherr, BF 1989Bacterivory by pelagic choreotrichous ciliates in coastal waters of the NW Mediterranean SeaMar Ecol Prog Ser55235240Google Scholar
  51. 51.
    Shikano, S, Luckinbill, LS, Kurihara, Y 1990Changes of traits in a bacterial population associated with protozoal predationMicrob Ecol207584Google Scholar
  52. 52.
    Simek, K, Pernthaler, J, Weinbauer, MG, Hornak, K, Dolan, JR, Nedoma, J, Masin, M, Amann, R 2001Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoirAppl Environ Microbiol6727232733Google Scholar
  53. 53.
    Simek, K, Vrba, J, Pernthaler, J, Posch, T, Hartman, P, Nedoma, J, Psenner, R 1997Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modesAppl Environ Microbiol63587595Google Scholar
  54. 54.
    Suzuki, MT 1999Effect of protistan bacterivory on coastal bacterioplankton diversityAquat Microb Ecol20261272Google Scholar
  55. 55.
    Suzuki, MT, Giovannoni, SJ 1996Bias caused by template annealing in the amplification of mixtures of 16 rRNA genes by PCRAppl Environ Microbiol62625630Google Scholar
  56. 56.
    Thingstad, F, Lignell, R 1997A theoretical approach to the question of how trophic interactions control carbon demand, growth rate, abundance, and diversityAquat Microb Ecol131927Google Scholar
  57. 57.
    Thingstad, TF 2000Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systemsLimnol Oceanogr4513201328Google Scholar
  58. 58.
    Hannen, EJ, Veninga, M, Bloem, J, Gons, HJ, Laanbroek, HJ 1999Genetic changes in the bacterial community structure associated with protistan grazingArch Hydrobiol1452538Google Scholar
  59. 59.
    Vaqué, D, Casamayor, EO, Gasol, JM 2001Dynamics of whole community bacterial production and grazing losses in seawater incubations as related to the changes in the proportions of bacteria with different DNA contentAquat Microb Ecol25163177Google Scholar
  60. 60.
    Vosjan, JH, Noort, GJ 1998Enumerating nucleoid-visible marine bacterioplankton: bacterial abundance determined after storage of formalin-fixed samples agrees with isopropanol rising methodAquat Microb Ecol14149154Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. Vázquez-Domínguez
    • 1
    • 3
    Email author
  • E.O. Casamayor
    • 1
    • 2
  • P. Català
    • 1
  • P. Lebaron
    • 1
  1. 1.Laboratoire Arago-CNRS-INSU UMR7621 BPObservatoire Océanologique de BanyulsBanyuls sur merFrance
  2. 2.Centre d’Estudis Acancats de Blanes, CSICUnitat de LimnologiaBlanesSpain
  3. 3.Unitat de Biologia Marina & OceanografíaInstitute de Ciències del Mar CMIMA-CSICBarcelonaSpain

Personalised recommendations