Microbial Ecology

, Volume 50, Issue 3, pp 307–314 | Cite as

Dynamics of Sulfate-Reducing Microorganisms (dsrAB genes) in Two Contrasting Mudflats of the Seine Estuary (France)

  • J. LeloupEmail author
  • F. Petit
  • D. Boust
  • J. Deloffre
  • G. Bally
  • O. Clarisse
  • L. Quillet


By combining molecular biology and biochemical approaches, the dynamics of sulfate-reducing microorganisms (SRM) was investigated in the sediments of the Seine estuary (France). Both intertidal mixing-zone and freshwater mudflats were sampled during a 1-year period; the quantification of SRM was realized by using competitive polymerase chain reaction (PCR) based on dsrAB gene amplification, previously described by Leloup et al. (2004), and sulfate reduction rate (SRR) was determined via the SO4 2 radiotracer method. Throughout the year, abundance of dsrAB genes and SRR were predominantly high in the top 15 cm of the sediment. A seasonal dynamic was observed; a predominance of activity was noted during the early summer, and seems to be mainly controlled by physical–chemical parameters (temperature and dissolved organic carbon concentration) and topographic evolution of the mudflat (erosion/deposit erosion).


Dissolve Organic Carbon Concentration Seasonal Evolution Freshwater Sediment Sulfate Reduction Rate Seine Estuary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Seine-Aval scientific research program, grants from the French government, region Haute Normandie, Agence de l'eau, and industrial partners in the Haute Normandie region (France). We thank Ms. D. Moscato for her help with the text (English) of this article. The first author held a research grant from the region of Haute Normandie.


  1. 1.
    Amann, RI, Ludwig, W, Schleifer, K-H 1995Phylogenetic identification and in situ detection of individual microbial cells without cultivationMicrobiol Rev59143169PubMedGoogle Scholar
  2. 2.
    Amann, RI, Ludwig, W 2000Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecologyFEMS Microbiol Ecol24555565Google Scholar
  3. 3.
    Arnosti, C, Jørgensen, BB, Sagemann, J, Thamdrup, B 1998Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reductionMar Ecol Prog Ser1655970Google Scholar
  4. 4.
    Bally, G, Mesnage, V, Deloffre, J, Clarisse, O, Lafite, R, Dupont, J-P 2004Chemical characterization of pore water of Seine estuary intertidal mudflats: relations with erosion–deposition cyclesMar Pollut Bull49163173PubMedGoogle Scholar
  5. 5.
    Barton, LL, Tomei, FA 1995Characteristics and activities of sulfate-reducing bacteriaBarton, LL eds. Sulfate-reducing Bacteria, vol 8Plenum PressNew York132Google Scholar
  6. 6.
    Böttcher, ME, Hespensheide, B, Llobet-Brossa, E, Beardsley, C, Larsen, O, Schramm, A, Wieland, A, Böttcher, G, Berninger, UG, Amann, R 2000The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperature intertidal mudflat: an integrated studyCont Shelf Res2017491769CrossRefGoogle Scholar
  7. 7.
    Brandt, KK, Vester, F, Jensen, AN, Ingvorsen, K 2001Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA)Microb Ecol41111PubMedGoogle Scholar
  8. 8.
    Canfield, DE 1989Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environmentsDeep-Sea Res36121138CrossRefGoogle Scholar
  9. 9.
    Capone, DG, Kiene, RP 1988Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon metabolismLimnol Oceanogr33725749CrossRefGoogle Scholar
  10. 10.
    Cypionka, H, Widdel, F, Pfenning, N 1985Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradientsFEMS Microbiol Ecol313945CrossRefGoogle Scholar
  11. 11.
    Dionisi, HM, Harms, G, Layton, AC, Gregory, IR, Parker, J, Hawkins, SA, Robinsons, KG, Sayler, GS 2003Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extractionAppl Environ Microbiol6965976604CrossRefPubMedGoogle Scholar
  12. 12.
    Dunette, DA, Chynoweth, DP, Mancy, KH 1985The source of hydrogen sulfide in anoxic sedimentWater Res19875884Google Scholar
  13. 13.
    Guézennec, L, Lafite, R, Dupont, JP, Meyer, R, Boust, D 1999Hydrodynamics of suspended particulate matter in the tidal freshwater of a microtidal estuary (the Seine estuary)Estuaries22717727Google Scholar
  14. 14.
    Hadas, O, Pinkas, R, Malinszy-Rushansky, N, Markel, D, Lazar, B 2001Sulfate reduction in Lake Agmon, IsraelSci Total Environ266203209CrossRefPubMedGoogle Scholar
  15. 15.
    Hansen, TA 1994Metabolism of sulfate-reducing prokaryotesAntonie Van Leeuwenhoek66165185CrossRefPubMedGoogle Scholar
  16. 16.
    Jestin, H, Bassoulet, P, Le-Hir, P, L'havanc, J, Degrees, Y (1998) Development of ALTUS, a high frequency acoustic submersible recording altimeter to accurately monitor bed elevation and quantify deposition or erosion of sediments. Proceedings of Ocean'98-IEEC/OES Conference, Nice (France), pp 189–194.Google Scholar
  17. 17.
    Jørgensen, BB 1982Mineralization of organic matter in the sea bed-the role of sulphate reductionNature269443645Google Scholar
  18. 18.
    Jørgensen, BB, Sørensen, J 1985Seasonal cycles of O2, NO3 3− and SO4 2− reduction in estuarine sediments: the significance of an NO3 3− reduction maximum in springMar Ecol Prog Ser246574Google Scholar
  19. 19.
    Karkhoff-Schweizer, RR, Huber, DPW, Voordouw, G 1995Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCRAppl Environ Microbiol61290296PubMedGoogle Scholar
  20. 20.
    Klein, M, Friedrich, M, Roger, AJ, Hugenholtz, P, fishbain, S, Abicht, H, Blackall, LL, Stahl, DA, Wagner, M 2001Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotesAppl Environ Microbiol6760286035Google Scholar
  21. 21.
    Koizumi, Y, Takii, S, Nishino, M, Nakajima, T 2003Vertical distributions of sulfate-reducing bacteria and methane-producing archaea quantified by oligonucleotide probe hybridization in profundal sediment of a mesotrophic lakeFEMS Microbiol Ecol148718Google Scholar
  22. 22.
    Kostka, JE, Roychoudhury, A, Cappellen, P 2002Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sedimentsBiogeochemistry604976CrossRefGoogle Scholar
  23. 23.
    Kristensen, E, Bodendender, J, Jensen, MH, Rennenberg, H, Jensen, KM 2000Sulfur cycling of intertidal Wadden Sea sediments (Königshafen, Island of Sylt, Germany): sulfate reduction and sulfur gas emissionJ Sea Res4293104Google Scholar
  24. 24.
    Kristensen, E, Holmer, M 2001Decomposition of plants materials in marine sediments exposed to different electron acceptors (O2, NO3− and SO4 2−), with emphasis on substrate origin, degradation kinetics, and the role of bioturbationGeochim Cosmochim Acta65419433CrossRefGoogle Scholar
  25. 25.
    Lafite, R, Billen, G, Dauvin, J-C, Chiffoleau, J-F 2001The Seine estuary: a man altered macrotidal systemEstuaries2467CrossRefGoogle Scholar
  26. 26.
    Leloup, J, Quillet, L, Oger, C, Boust, D, Petit, F 2004Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sedimentsFEMS Microbiol Ecol47207214PubMedGoogle Scholar
  27. 27.
    Li, J-H, Purdy, KJ, Takii, S, Hayashi, H 1999Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate-reducing activity in a freshwater lake sedimentFEMS Microbiol Ecol283139Google Scholar
  28. 28.
    Lovley, DR, Klug, MJ 1983aSulfate reducers can outcompete methanogens at freshwater sulfate concentrationsAppl Environ Microbiol45552560Google Scholar
  29. 29.
    Lovley, DR, Klug, MJ 1986Model for the distribution of sulfate reduction and methanogenesis in freshwater sedimentsGeochim Cosmochim Acta501118CrossRefGoogle Scholar
  30. 30.
    Minz, D, fishbain, S, Green, SJ, Muyzer, G, Cohen, Y, Rittman, BE, Stahl, DA 1999Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxiaAppl Environ Microbiol6546594665PubMedGoogle Scholar
  31. 31.
    Moeslund, L, Thamdrup, B, Jørgensen, BB 1994Sulfur and iron cycling in coastal sediment: radiotracer studies and seasonal dynamicsBiogeochemistry27129152Google Scholar
  32. 32.
    Nedwell, DB 1999Effect of low temperature of microbial growth: lowered affinity for substrates limits growth at low temperatureFEMS Microbiol Ecol30101111PubMedGoogle Scholar
  33. 33.
    Otte, S, Kuenen, G, Nielsen, LP, Paerl, HW, Zopfi, J, Schulz, HN, Teske, A, Strotmann, B, Gallardo, VA, Jørgensen, BB 1999Nitrogen carbon, and sulfur metabolism in natural Thioploca samplesAppl Environ Microbiol6531483157PubMedGoogle Scholar
  34. 34.
    Ravenschlag, K, Sahm, K, Knoblauch, C, Jørgensen, BB, Amann, R 2000Community structure, cellular rRNA content and activity of sulfate reducing bacteria in marine arctic sedimentsAppl Environ Microbiol6635923602CrossRefPubMedGoogle Scholar
  35. 35.
    Rooney-Varga, JN, Devereux, R, Evans, RS, Hines, ME 1997Seasonal changes in the relative abundance or uncultivated sulfate-reducing bacteria in a saltmarsh sediment and in the rhizosphere of Spartina alterniflora Appl Environ Microbiol6338953901PubMedGoogle Scholar
  36. 36.
    Sahm, K, Knoblauch, C, Amann, R 1999Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine arctic sedimentsAppl Environ Microbiol6539763981PubMedGoogle Scholar
  37. 37.
    Sahm, K, MacGregor, BJ, Jørgensen, BB, Stahl, DA 1999Sulfate reduction and vertical distribution of sulfate-reducing bacteria quantified by rRNA slot–blot hybridization in a coastal marine sedimentEnviron Microbiol16574CrossRefPubMedGoogle Scholar
  38. 38.
    Shiah, F-K, Duclow, HW 1994Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USAMar Ecol Prog Ser103297308Google Scholar
  39. 39.
    Thamdrup, B, Fossing, H, Jørgensen, BB 1994Manganese, iron, and sulphur cycling in coastal marine sediment Aarhus Bay, DenmarkGeochim Cosmochim Acta5851155129Google Scholar
  40. 40.
    Thode-Andersen, S, Jørgensen, BB 1989Sulfate-reduction and the formation of 35S-labeled FeS, FeS2, and S0 in coastal marine sedimentsLimnol Oceanogr34793806CrossRefGoogle Scholar
  41. 41.
    Wagner, M, Roger, A, Flax, J, Brusseau, G, Stahl, D 1998Phylogeny of dissimilatory reductase supports an early origin of sulfate respirationJ Bacteriol18029752982PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • J. Leloup
    • 1
    • 2
    Email author
  • F. Petit
    • 2
  • D. Boust
    • 3
  • J. Deloffre
    • 4
  • G. Bally
    • 4
  • O. Clarisse
    • 5
  • L. Quillet
    • 2
  1. 1.Max-Planck Institute for Marine MicrobiologyBremenGermany
  2. 2.Laboratoire de Microbiolologie Du Froid, Groupe Biodiversité et Environment, UPRESS-2123Université de RouenMont Saint AignanFrance
  3. 3.Laboratoire d'études radioécologiques de la façade AtlantiqueIRSNCherbourg-OctevilleFrance
  4. 4.Laboratoire de morphodynamique continentale et côtière, UMR CNRS 6143Université de RouenMont Saint AignanFrance
  5. 5.Laboratoire de Chimie Analytique Marine, UMR CNRS 8013Université des Sciences et Technologies de LilleVillenueve d'AscqFrance

Personalised recommendations