Microbial Ecology

, Volume 48, Issue 1, pp 103–110 | Cite as

Productivity and Growth of a Natural Population of the Smallest Free-Living Eukaryote under Nitrogen Deficiency and Sufficiency

  • E. Fouilland
  • C. Descolas-Gros
  • C. Courties
  • Y. Collos
  • A. Vaquer
  • A. Gasc


The influence of dissolved inorganic nitrogen (DIN) enrichments on cell-normalized carbon uptake rate, chlorophyll a content, and apparent cell size of a picoeukaryote (<1 μm) (Ostreococcus tauri, the smallest eukaryotic cell) from a natural summer phytoplanktonic assemblage (<200 μm) in a northern Mediterranean Lagoon (Thau Lagoon) was studied in 20-L enclosures in June 1995. The natural planktonic community was incubated in situ for 24 h with initial ammonium and nitrate enrichments and compared to a control without enrichment. O. tauri cell-normalized productivity was estimated from the combination of flow cytometric (FCM) enumeration and 2-h (radioactive) carbonate incorporation measured on post-incubation size fractions (<1μm). No difference between the effects of the two DIN sources of enrichment on the studied biological parameters was measured during this experiment. Growth of natural O. tauri was perturbed by the low DIN availability in the control with drastic changes in cell productivity, chlorophyll content, and cell cycle (from the variations in apparent cell size) as compared to the DIN sufficiency conditions. On the other hand, a very high specific growth rate for natural O. tauri, up to 8 day−1 under DIN enrichments, has been estimated from production and abundance data obtained during this experiment. This supports values measured in culture and suggests that the yearly high contribution of picophytoplankton to the total primary production in Thau Lagoon is likely to be due to their high growth rate rather than the previously suggested lack of grazing pressure.


Dissolve Inorganic Nitrogen High Specific Growth Rate Nuclepore Filter Carbon Uptake Rate Thau Lagoon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by CNRS, University Montpellier II, IFREMER (URM 5). We thank three anonymous referees for insightful comments on the manuscript. This paper represents a portion of a thesis of the University Paris VI of Eric Fouilland, who received a BDI fellowship from CNRS and IFREMER. This is an ISEM 2004 contribution for Chantal Descolas-Gros.


  1. 1.
    André, J-M, Navarette, C, Blanchot, J, Radenac, M-H 1999Picophytoplankton dynamics in the equatorial Pacific: Growth and grazing rates from cytometric counts.J Geophys Res1043369380CrossRefGoogle Scholar
  2. 2.
    Agawin, NSR, Duarte, CM, Agustí, S 2000Nutrient and temperature control the contribution of picoplankton biomass and production.Limnol Oceanogr45591600Google Scholar
  3. 3.
    Banse, K 1992Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open Sea.Falkowski, PGWoodhead, AD eds. Primary Productivity and Biogeochemical Cycles in the sea.Plenum PressNew York409440Google Scholar
  4. 4.
    Brzezinski, MA, Olson, RJ, Chisholm, SW 1990Silicon availability and cell cycle progression in marine diatoms.Mar Ecol Prog Ser678396Google Scholar
  5. 5.
    Caperon, J, Meyer, J 1972Nitrogen-limited growth of marine phytoplankton—I.Changes in population characteristics with steady-state growth rate. Deep-Sea Res19601618CrossRefGoogle Scholar
  6. 6.
    Charpy, L, Blanchot, J 1998Photosynthetic picoplankton in French Polynesian atoll lagoons: estimation of taxa contribution to biomass and production by flow cytometry.Mar Ecol Prog Ser1625770Google Scholar
  7. 7.
    Chrétiennot-Dinet, M-J, Courties, C, Vaquer, A, Neveux, J, Claustre, H, Lautier, J, Machado, MC 1995A new marine picoeukaryote: Ostreococcus tauri gen. et sp. Nov. (Chlorophyta, Prasinophyceae).Phycologia3485292Google Scholar
  8. 8.
    Collos, Y, Slawyk, G 1979 13C and 15N uptake by marine phytoplankton. I. Influence of the nitrogen source and concentration in laboratory cultures of marine diatoms.J Phycol15186190Google Scholar
  9. 9.
    Collos, Y, Slawyk, G 1984 13C and 15N uptake by marine phytoplankton. III. Interactions in euphotic zone profiles of stratified oceanic areas.Mar Ecol Progr19223231Google Scholar
  10. 10.
    Courties, C, Vaquer, A, Troussellier, M, Lautier, J, Chrétiennot-Dinet, M-J, Neveux, J, Machado, C, Claustre, H 1994Smallest eukaryotic organism.Nature370255CrossRefGoogle Scholar
  11. 11.
    Courties, C, Perasso, R, Chrétiennot-Dinet, M-J, Gouy, M, Guillou, L, Troussellier, M 1998Phylogenetic analysis and genome size of Ostreococcus tauri (Chlorophyta, Prasinophyceae).J Phycol34844849CrossRefGoogle Scholar
  12. 12.
    Douglas, DJ 1984Microautoradiography-based enumeration of photosynthetic picoplankton with estimates of carbon-specific growth rates.Mar Ecol Prog Ser14223228Google Scholar
  13. 13.
    Dupuy, C, Vaquer, A, Lam-Hoai, T, Rougier, C, Mazouni, N, Lautier, J, Collos, Y, Le Gall, S 2000Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon.Mar Ecol Prog Ser205171184Google Scholar
  14. 14.
    DuRand, MD, Green, RE, Sosik, HM, Olson, RJ 2002Diel variations in optical properties of Micromonas pusilla (Prasinophyceae).J Phycol3811321142CrossRefGoogle Scholar
  15. 15.
    Elrifi, IR, Turpin, DH 1986Nitrate and ammonium induced photosynthetic suppression in N-limited Selenastrum minutum.Plant Physiol81273279Google Scholar
  16. 16.
    Falkowski, PG, Stone, DP 1975Nitrate uptake in marine phytoplankton: energy sources and the interaction with carbon fixation.Mar Biol327784Google Scholar
  17. 17.
    Fouilland, E, Descolas-Gros, C, Collos, Y, Vaquer, V, Souchu, P, Gasc, A, Bibent, B, Pons, V 2002Influence of nitrogen enrichment on size-fractionated in vitro carboxylase activities of phytoplankton from Thau Lagoon (Coastal Mediterranean Lagoon, France).J Exp Mar Ecol Biol275147171CrossRefGoogle Scholar
  18. 18.
    Furnas, MJ 1990 In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates.J Plankton Res1211171151Google Scholar
  19. 19.
    Geider, RJ, LaRoche, J, Greene, RM, Olaizola, M 1993Response of the photosynthetic apparatus of Phaeodactylum tricurnutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation.J Phycol29755766Google Scholar
  20. 20.
    Harrison, PJ, Conway, HL, Holmes, RW, Davis, CO 1977Marine diatoms grown chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis,Skeletonema costatum, and Thalassiosira gravita.Mar Biol431931Google Scholar
  21. 21.
    Kirchman, DL 2002Calculating microbial growth rates from data on production and standing stocks.Mar Ecol Prog Ser233303306Google Scholar
  22. 22.
    Koroleff, F 1976Determination of nutrients. Methods of seawater analysis.Grasshoff, K eds. Methods of Seawater Analysis.Verlag Chemie.117182Google Scholar
  23. 23.
    Li, WKW 1994Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting.Limnol Oceanogr39169175Google Scholar
  24. 24.
    Li, WKW, Harrison, WG 1982Carbon flow into the end-products of photosynthesis in short and long incubations of a natural phytoplankton populations.Mar Biol72175182Google Scholar
  25. 25.
    Marie, D, Brussaard, CPD, Partensky, F, Vaulot, D 1999Flow cytometric analysis of phytoplankton, bacteria and viruses.Robinson, JP eds. Current Protocols in Cytometry.WilleyNew York115Google Scholar
  26. 26.
    Neveux, J, Lantoine, F 1993Spectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique.Deep-Sea Res4017471765CrossRefGoogle Scholar
  27. 27.
    Olson, RJ, Vaulot, D, Chisholm, SW 1986Effects of environmental stresses on the cell cycle of two marine phytoplankton species.Plant Physiol80918925Google Scholar
  28. 28.
    Orellana, MV, Perry, MJ, Watson, BA 1988Probes for essessing single-cell primary production: antibodies against ribulose-1,5-bisphosphate carboxylase (RUBPcase) and peridinin/chlorophyll a protein (PCP).Yentsch, CMMague, FCHoran, PK eds. Immunological Approaches to Coastal Estuarine and Oceanographic questions. Lecture Notes on Coastal and Estuarines StudiesSpringerNew York243262Google Scholar
  29. 29.
    Parpais, J, Marie, D, Partensky, F, Morin, P, Vaulot, D 1996Effect of phosphorus starvation on cell cycle of the photosynthetic prokaryote Prochlorococcus spp.Mar Ecol Prog Ser132265274Google Scholar
  30. 30.
    Raven, JA 1998Small is beautiful: the picophytoplankton. The Twelfth Tansley Lecture.Funct Ecol12503513CrossRefGoogle Scholar
  31. 31.
    Riemann, B, Jensen, LM 1991Measurements of phytoplankton primary production by means of the acidification and bubbling method.J Plankton Res13853862Google Scholar
  32. 32.
    Serruya, C, Berman, T 1975Phosphorus, nitrogen and the growth of algae in lake Kinneret.J Phycol11155162Google Scholar
  33. 33.
    Slawyk, G, Collos, Y 1982 13C and 15N uptake by marine phytoplankton. 2. Results from a tropical area.Rapp P-v Réun Cons int Explor Mer180209213Google Scholar
  34. 34.
    Steemann-Nielsen, E 1952The use of radioactive carbon (14C) for measuring organic production in the sea.J Cons Int Expl Mer18117140Google Scholar
  35. 35.
    Tréguer, P, Le Corre, P 1975Manuel d’analyse des sels nutritifs dans Peau de mer. Utilisation de l’AutoAnalyseur II Technicon LOG.Université de Bretagne Occidentale BrestFranceGoogle Scholar
  36. 36.
    Throndsen, J 1976Occurrence and productivity of small marine flagellates.Norw J Bot23269293Google Scholar
  37. 37.
    Troussellier, M, Courties, C, Zettelmaier, S 1995Flow cytometric analysis of coastal Lagoon bacterioplankton and picophytoplankton: fixation and storage effects.Estuar Coast Shelf S40621633CrossRefGoogle Scholar
  38. 38.
    Turpin, DH 1983Ammonium induced photosynthetic suppression in ammonium limited Dunaliella tertiolecta (Chlorophyta).J Phycol197076Google Scholar
  39. 39.
    Turpin, DH 1991Effects of inorganic N availability on algal photosynthesis and carbon metabolism.J Phycol271420Google Scholar
  40. 40.
    Vaulot, D, Olson, RJ, Merkel, S, Chisholm, SW 1987Cell-cycle response to nutrient starvation in two phytoplankton species Thalassiosira weissflogii and Hymenomonas carterae.Mar Biol95625630Google Scholar
  41. 41.
    Vaquer, A, Troussellier, M, Courties, C, Bibent, B 1996Standing stock and dynamics of picophytoplankton in the Thau Lagoon (Northwest Mediterranean coast).Limnol Oceanogr4118211828Google Scholar
  42. 42.
    Verity, PG, Robertson, CY, Tronzo, CR, Andrews, MG, Nelson, JR, Sieracki,  1992Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton.Limnol Oceanogr3714341446Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • E. Fouilland
    • 1
    • 3
  • C. Descolas-Gros
    • 1
    • 4
  • C. Courties
    • 1
    • 5
  • Y. Collos
    • 1
    • 6
  • A. Vaquer
    • 1
    • 6
  • A. Gasc
    • 2
    • 7
  1. 1.Laboratoire d’Hydrobiologie Marine et ContinentaleUMR 5556 CNRS, Université Montpellier IIMontpellier Cedex 05France
  2. 2.Station IFREMERLaboratoire EcologieFrance
  3. 3.The Scottish Association for Marine ScienceDunstaffnage Marine LaboratoryDunbeg, ArgyllUK
  4. 4.ISEM PaléoenvironnementsUMR 5554 CNRSMontpellierFrance
  5. 5.Laboratoire Modèles en Biologie Cellulaire et IntégréeUMR CNRS 7628Banyuls-sur-merFrance
  6. 6.Ecosystèmes LagunairesUMR 5119 CNRSMontpellierFrance
  7. 7.The Oceanic InstituteU.S.A.

Personalised recommendations