Microbial Ecology

, Volume 47, Issue 4, pp 416–426 | Cite as

Chlorophyllous and Achlorophyllous Specimens of Epipactis microphylla (Neottieae, Orchidaceae) Are Associated with Ectomycorrhizal Septomycetes, including Truffles

  • M.-A. Selosse
  • A. Faccio
  • G. Scappaticci
  • P. Bonfante
Article

Abstract

Mycoheterotrophic species (i.e., achlorophyllous plants obtaining carbon from their mycorrhizal fungi) arose many times in evolution of the Neottieae, an orchid tribe growing in forests. Moreover, chlorophyllous Neottieae species show naturally occurring achlorophyllous individuals. We investigated the fungal associates of such a member of the Neottieae, Epipactis microphylla, to understand whether their mycorrhizal fungi predispose the Neottieae to mycoheterotrophy. Root symbionts were identified by sequencing the fungal ITS of 18 individuals from three orchid populations, including achlorophyllous and young, subterranean individuals. No rhizoctonias (the usual orchid symbionts) were recovered, but 78% of investigated root pieces were colonized by Tuber spp. Other Pezizales and some Basidiomycetes were also found. Using electron microscopy, we demonstrated for the first time that ascomycetes, especially truffles, form typical orchid mycorrhizae. All identified fungi (but one) belonged to taxa forming ectomycorrhizae on tree roots, and four of them were even shown to colonize surrounding trees. This is reminiscent of mycoheterotrophic orchid species that also associate with ectomycorrhizal fungi, although with higher specificity. Subterranean and achlorophyllous E. microphylla individuals thus likely rely on tree photosynthates, and a partial mycoheterotrophy in individuals plants can be predicted. We hypothesize that replacement of rhizoctonias by ectomycorrhizal symbionts in Neottieae entails a predisposition to achlorophylly.

Notes

Acknowledgments

We are grateful to F. Dusak and P. Pernot (Société Française d’Orchidophilie) for access to population C. We thank A. Dettai, A. Tillier and S. Tillier (Muséum National d’Histoire Naturelle), as well as D. Marsh and C. Saison for their constant help. We thank M. Bidartondo for helpful suggestions and providing the ITS4tul primer. We also thank an anonymous referee for careful remarks on the submitted version of this paper. The research was funded by the Muséum National d’Histoire Naturelle (Service de Systématique Moléculaire) and the Société Française d’Orchidophilie (M.-A. Selosse) and the Strategic Programme CNR-Regioni on Tuber (P. Bonfante).

References

  1. 1.
    Altschul, SF, Madden, TL, Schaffer, AA, Zhang, JH, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res2533893402PubMedGoogle Scholar
  2. 2.
    Balestrini, R, Hahn, MG, Faccio, A, Mendgen, K, Bonfante, P 1996Differential localization of carbohydrate epitopes in plant cell wall in the presence and in absence of arbuscular mychorrizal fungi.Plant Physiol111203213PubMedGoogle Scholar
  3. 3.
    Barrow, JR, Osuna, P 2002Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt.J Arid Env51449459CrossRefGoogle Scholar
  4. 4.
    Bayman, P, Lebron, LL, Tremblay, RL, Lodge, DJ 1997Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae).New Phytol135143149CrossRefGoogle Scholar
  5. 5.
    Bergero, R, Perotto, S, Girlanda, M, Vidano, G, Luppi, AM 2000Ericoid mycorrhizal fungi are common associates of a Mediterranean ectomycorrhizal plant (Quercus ilex).Mol Ecol916391649CrossRefPubMedGoogle Scholar
  6. 6.
    Bidartondo, MI, Kretzer, AM, Pine, EM, Bruns, TD 2000High root concentration and uneven ectomycorrhizal diversity near Sarcodes sanguined (Ericaceae): a cheater that stimulates its victims?Am J Bot8717831788PubMedGoogle Scholar
  7. 7.
    Bidartondo, MI, Bruns, TD, Weiß, M, Sergio, C, Read, DJ 2003Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort.Proc R Soc Lond B270835842PubMedGoogle Scholar
  8. 8.
    Björkman, E 1960 Monotropa hypopitys L.—an epiparasite on tree roots.Physiol Plant13308327Google Scholar
  9. 9.
    Bonfante, P, Genre, A, Faccio, A, Martini, I, Schauser, L, Stougaard, J, Webb, J, Parniske, M 2000The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells.Mol Plant Microb Interact1311091120Google Scholar
  10. 10.
    Bonfante, P 2001At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton.Mycota44561Google Scholar
  11. 11.
    Cameron, KM, Chase, MW, Whitten, WM, Kores, PJ, Jarrell, DC, Albert, VA, Yukawa, T, Hills, HG, Goldman, DH 1999A phylogenetic analysis of the Orchidaceae: evidence from RBCL nucleotide sequences.Am J Bot86208224Google Scholar
  12. 12.
    Currah, RS, Hambleton, S, Smreciu, EA 1988Mycorrhizae and mycorrhizal fungi of Calypso bulbosa (Orchidaceae).Am J Bot75739752Google Scholar
  13. 13.
    Currah, RS, Smreciu, EA, Hambleton, S 1990Mycorrhizae and mycorrhizal fungi of boreal species of Platanthera and Coeloglossum (Orchidaceae).Can J Bot6811711181Google Scholar
  14. 14.
    Dressler, RL 1993Phylogeny and Classification of the Orchid FamilyCambridge University PressCambridge, UKGoogle Scholar
  15. 15.
    Fitter, AH, Hodge, A, Daniel, TJ 1999Resource sharing in plant–fungus communities: did the carbon move for you?Trends Ecol Evol147071CrossRefGoogle Scholar
  16. 16.
    Francis, R, Read, DJ 1984Direct transfer of carbon between plants connected by vesicular–arbuscular mycorrhizal mycelium.Nature3075356Google Scholar
  17. 17.
    Gardes, M, Bruns, TD 1993ITS primers with enhanced specificity for basidiomycetes—applications to the identification of mycorrhizae and rusts.Mol Ecol2113118PubMedGoogle Scholar
  18. 18.
    Gebauer, G, Meyer, M 2003 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association.New Phytol160209223CrossRefGoogle Scholar
  19. 19.
    Griesbach, RJ 1979The albino form of Epipactis helleborine.Am Orchid Soc Bull48808809Google Scholar
  20. 20.
    Koske, RE, Gemma, JN 1989A modified procedure for staining roots to detect VA mycorrhizas.Mycol Res92486505Google Scholar
  21. 21.
    Kristiansen, KA, Taylor, DL, Kjoller, R, Rasmussen, HN, Rosendahl, S 2001Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences.Mol Ecol8020892093CrossRefGoogle Scholar
  22. 22.
    Landwehr, J 1983Les orchidées sauvages de Suisse et d’Europe, tome IIPiantanidaLausanneGoogle Scholar
  23. 23.
    Leake, JR 1994The biology of myco-heterotrophic (‘saprophytic’) plants.New Phytol127171216Google Scholar
  24. 24.
    McKendrick, SL, Leake, DJ, Taylor, DL, Read, DJ 2000Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections.New Phytol145539548CrossRefGoogle Scholar
  25. 25.
    McKendrick, SL, Leake, DJ, Taylor, DL, Read, DJ 2002Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Neottia nidus-avis (L.)Rich and characterisation of its mycorrhizal fungi.New Phytol154233247CrossRefGoogle Scholar
  26. 26.
    Montanini, B, Betti, M, Marquez, AJ, Balestrini, R, Bonfante, P, Ottonello, S 2003Distinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus.Biochem J373357368CrossRefPubMedGoogle Scholar
  27. 27.
  28. 28.
    O’Donnell, K 1993

    Fusarium and its near relatives.

    Reynolds, DRTaylor, JW eds. The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal SystematicsCAB InternationalWallingford225233
    Google Scholar
  29. 29.
    Pargney, JC, Brimont, A 1995Production of concentrated polyphenols by the root cap cells of Corylus associated with Tuber—ultrastructural study and element localization using electron-energy-loss spectroscopy and imaging.Trees9149157Google Scholar
  30. 30.
    Peterson, RL, Bonfante, P, Faccio, A, Uetake, Y 1996The interface between fungal hyphae and orchid protocorm cells.Can J Bot7418611870Google Scholar
  31. 31.
    Piercey, MM, Thormann, MN, Currah, RS 2002Saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicum and Picea mariana in culture.Mycorrhiza12175180CrossRefPubMedGoogle Scholar
  32. 32.
    Platner, I, Hall, IR 1995Parasitism of nonhost plants by the mycorrhizal fungus Tuber melanosporum.Mycol Res9913671370Google Scholar
  33. 33.
    Rasmussen, HN 1995Terrestrial Orchids—from Seed to Mycotrophic PlantCambridge University PressCambridge, UKGoogle Scholar
  34. 34.
    Rasmussen, H.N 2002Recent developments in the study of orchid mycorrhiza.Plant Soil244149163CrossRefGoogle Scholar
  35. 35.
    Robinson, D, Fitter, A 1999The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network.J Exp Bot50913CrossRefGoogle Scholar
  36. 36.
    Roland, JC, Vian, B 1991

    General preparation and staining of thin sections.

    Hall, JLHawes, C eds. Electron Microscopy of Plant CellsCambridge University PressCambridge, UK166
    Google Scholar
  37. 37.
    Salmia, A 1988Endomycorrhizal fungus in chlorophyll-free and green forms of the terrestrial orchid Epipactis helleborine.Karstenia28318Google Scholar
  38. 38.
    Salmia, A 1989General morphology and anatomy of chlorophyll-free and green forms of Epipactis helleborine (Orchidaceae).Ann Bot Fennici2695105Google Scholar
  39. 39.
    Scannerini, S, Bonfante, P 1983Comparative ultrastructural analysis of mycorrhizal associations.Can J Bot61917943Google Scholar
  40. 40.
    Scappaticci, C, Scappaticci, G 1998 Epipactis microphylla (Ehrhardt) Swartz lusus rosea.Cah Soc Fr Orch46869Google Scholar
  41. 41.
    Scrugli, A, Riess, S, Melis, F 1986Contributo alla conoscenza delle micorrize nelle Orchidaceae della Sardegna.Mic Ital16168Google Scholar
  42. 42.
    Selosse, MA, Bauer, R, Moyersoen, B 2002Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees in silva: microscopic and molecular evidence.New Phytol155183195CrossRefGoogle Scholar
  43. 43.
    Selosse, MA, Weiß, M, Jany, JL, Tillier, A 2002Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae.Mol Ecol1118311844CrossRefPubMedGoogle Scholar
  44. 44.
    Simard, SW, Perry, DA, Jones, MD, Myrold, DD, Durall, DM, Molina, R 1997Net transfer of carbon between ectomycorrhizal tree species in the field.Nature388579582CrossRefGoogle Scholar
  45. 45.
    Smith, SE, Read, DJ 1997Mycorrhizal SymbiosisAcademic PressNew YorkGoogle Scholar
  46. 46.
    Soragni, E, Bolchi, A, Balestrini, R, Gambaretto, C, Percudani, R, Bonfante, P, Ottonello, S 2001A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii.EMBO J2050795090CrossRefPubMedGoogle Scholar
  47. 47.
    Taylor, DL, Bruns, TD 1997Independent, specialized invasions of ectomycorrhizal mutualism by two non photosynthetic orchids.Proc Natl Acad Sci USA9445104515CrossRefPubMedGoogle Scholar
  48. 48.
    Taylor, DL, Bruns, TD 1999Population, habitat and genetic correlates of mycorrhizal specialization in the cheating orchids Corallorhiza maculata and C. mertensiana.Mol Ecol817191732CrossRefPubMedGoogle Scholar
  49. 49.
    Taylor, DL, Bruns, TD, Leake, JR, Read, D 2002

    Mycorrhizal specificity and function in myco-heterotrophic plants.

    Van der Heijden, MGASanders, I eds. Mycorrhizal EcologySpringer VerlagBerlin375413
    Google Scholar
  50. 50.
    Taylor, DL, Bruns, TD, Szaro, TM, Hodges, SA 2003Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid.Am J Bot9011681179Google Scholar
  51. 51.
    Vrålstad, T, Myhre, E, Schumacher, T 2002Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal-polluted habitats.New Phytol155131148CrossRefGoogle Scholar
  52. 52.
    Yang, CS, Korf, RP 1985 Ascorhizoctonia gen. nov. and Complexipes emend., two genera for anamorphs of the species assigned to Tricharina (Discomycetes).Mycotaxon23457481Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • M.-A. Selosse
    • 1
  • A. Faccio
    • 2
  • G. Scappaticci
    • 3
  • P. Bonfante
    • 2
  1. 1.UMR CNRS 7138 “Systématique, Adaptation et Evolution’’ and Service de Systématique Moléculaire (IFR CNRS 101)Muséum National d’Histoire NaturelleParisFrance
  2. 2.Dipartimento di Biologia Vegetale dell’UniversitàIstituto per la Protezione delle Piante—CNRTorinoItaly
  3. 3.Société Française d’OrchidophilieLes CombeauxDieulefitFrance

Personalised recommendations