Microbial Ecology

, Volume 47, Issue 1, pp 59–67 | Cite as

Archaeal Community Structure and Pathway of Methane Formation on Rice Roots

  • K. -J. Chin
  • T. Lueders
  • M. W. Friedrich
  • M. Klose
  • R. ConradEmail author


The community structure of methanogenic Archaea on anoxically incubated rice roots was investigated by amplification, sequencing, and phylogenetic analysis of 16S rRNA and methyl-coenzyme M reductase (mcrA) genes. Both genes demonstrated the presence of Methanomicrobiaceae, Methanobacteriaceae, Methanosarcinaceae, Methanosaetaceae, and Rice cluster I, an uncultured methanogenic lineage. The pathway of CH4 formation was determined from the 13C-isotopic signatures of the produced CH4, CO2 and acetate. Conditions and duration of incubation clearly affected the methanogenic community structure and the pathway of CH4 formation. Methane was initially produced from reduction of CO2 exclusively, resulting in accumulation of millimolar concentrations of acetate. Simultaneously, the relative abundance of the acetoclastic methanogens (Methanosarcinaceae, Methanosaetaceae), as determined by T-RFLP analysis of 16S rRNA genes, was low during the initial phase of CH4 production. Later on, however, acetate was converted to CH4 so that about 40% of the produced CH4 originated from acetate. Most striking was the observed relative increase of a population of Methanosarcina spp. (but not of Methanosaeta spp.) briefly before acetate concentrations started to decrease. Both acetoclastic methanogenesis and Methanosarcina populations were suppressed by high phosphate concentrations, as observed under application of different buffer systems. Our results demonstrate the parallel change of microbial community structure and function in a complex environment, i.e., the increase of acetoclastic Methanosarcina spp. when high acetate concentrations become available.


Rice Root Methanogenic Community mcrA Gene Acetoclastic Methanogen Rice Field Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Peter Claus for analysis of 13C-isotopic data and the Fonds der Chemischen Industrie, Germany, for financial support.


  1. 1.
    Avery, GB, Shannon, RD, White, JR, Martens, CS, Alperin, MJ 1999Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland.Global Biogeochem Cycles13475484Google Scholar
  2. 2.
    Bidle, KA, Kastner, M, Bartlett, DH 1999A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia Margin (ODP site 892b).FEMS Microbiol Lett177101108PubMedGoogle Scholar
  3. 3.
    Chin, KJ, Lukow, T, Conrad, R 1999Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil.Appl Environ Microbiol6523412349Google Scholar
  4. 4.
    Conrad, R, Frenzel, P 2002Flooded soils.Bitton, G eds. Encyclopedia of Environmental Microbiology.John Wiley & SonsNew York13161333Google Scholar
  5. 5.
    Conrad, R, Klose, M 1999Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots.FEMS Microbiol Ecol30147155CrossRefPubMedGoogle Scholar
  6. 6.
    Conrad, R, Klose, M 2000Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots.FEMS Microbiol Ecol342734CrossRefPubMedGoogle Scholar
  7. 7.
    Conrad, R, Klose, M, Claus, P 2000Phosphate inhibits acetotrophic methanogenesis on rice roots.Appl Environ Microbiol66828831Google Scholar
  8. 8.
    Conrad, R, Klose, M, Claus, P 2002Pathway of CH4 formation in anoxic rice field soil and rice roots determined by 13C-stable isotope fractionation.Chemosphere47797806CrossRefPubMedGoogle Scholar
  9. 9.
    Dannenberg, S, Conrad, R 1999Effect of rice plants on methane production and rhizospheric metabolism in paddy soil.Biogeochemistry455371CrossRefGoogle Scholar
  10. 10.
    DeLong, EF, Pace, NR 2001Environmental diversity of Bacteria and Archaea.Syst Biol50470478CrossRefPubMedGoogle Scholar
  11. 11.
    Edwards, C,  et al. 1998Microbiological processes in the terrestrial carbon cycle—methane cycling in peat.Atmos Environ3232473255CrossRefGoogle Scholar
  12. 12.
    Ermler, U, Grabarse, W, Shima, S, Goubeaud, M, Thauer, RK 1997Crystal structure of methyl coenzyme M reductase—the key enzyme of biological methane formation.Science27814571462PubMedGoogle Scholar
  13. 13.
    Fey, A, Chin, KJ, Conrad, R 2001Thermophilic methanogens in rice field soil.Environ Microbiol3295303CrossRefPubMedGoogle Scholar
  14. 14.
    Fey, A, Conrad, R 2000Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil.Appl Environ Microbiol6647904797PubMedGoogle Scholar
  15. 15.
    Friedrich, MW 2002Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms.J Bacteriol184278289PubMedGoogle Scholar
  16. 16.
    Galand, PE, Saarnio, S, Fritze, H, Yrjälä, K 2002Depth related diversity of methanogen Archaea in Finnish oligotrophic fen.FEMS Microbiol Ecol42441449CrossRefGoogle Scholar
  17. 17.
    Grosskopf, R, Janssen, PH, Liesack, W 1998Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval.Appl Environ Microbiol64960969PubMedGoogle Scholar
  18. 18.
    Grosskopf, R, Stubner, S, Liesack, W 1998Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms.Appl Environ Microbiol6449834989PubMedGoogle Scholar
  19. 19.
    Hales, BA, Edwards, C, Ritchie, DA, Hall, G, Pickup, RW, Saunders, JR 1996Isolation and identification of methanogen-specific DNA from blanket bog feat by PCR amplification and sequence analysis.Appl Environ Microbiol62668675PubMedGoogle Scholar
  20. 20.
    Jetten, MSM, Stams, AJM, Zehnder, AJB 1992Methanogenesis from acetate—a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp.FEMS Microbiol Rev88181197Google Scholar
  21. 21.
    Krüger, M, Eller, G, Conrad, R, Frenzel, P 2002Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors.Global Change Biol8265280CrossRefGoogle Scholar
  22. 22.
    Krüger, M, Frenzel, P, Conrad, R 2001Microbial processes influencing methane emission from rice fields.Global Change Biol74963CrossRefGoogle Scholar
  23. 23.
    Lehmann-Richter, S, Grosskopf, R, Liesack, W, Frenzel, P, Conrad, R 1999Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots.Environ Microbiol1159166CrossRefPubMedGoogle Scholar
  24. 24.
    Lelieveld, J, Crutzen, PJ, Dentener, FJ 1998Changing concentrations, lifetime and climate forcing of atmospheric methane.Tellus50B128150Google Scholar
  25. 25.
    Lloyd, D,  et al. 1998Micro-ecology of peat—minimally invasive analysis using confocal laser scanning microscopy, membrane inlet mass spectrometry, and PCR amplification of methanogen-specific gene sequences.FEMS Microbiol Ecol25179188CrossRefGoogle Scholar
  26. 26.
    Lueders, T, Chin, KJ, Conrad, R, Friedrich, M 2001Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage.Environ Microbiol3194204CrossRefPubMedGoogle Scholar
  27. 27.
    Lueders, T, Friedrich, M 2000Archaeal population dynamics during sequential reduction processes in rice field soil.Appl Environ Microbiol6627322742PubMedGoogle Scholar
  28. 28.
    Lueders, T, Friedrich, MW 2002Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil.Appl Environ Microbiol6824842494CrossRefPubMedGoogle Scholar
  29. 29.
    Lueders, T, Friedrich, MW 2003Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic oure cultures and soil DNA extracts.Appl Environ Microbiol69320326CrossRefPubMedGoogle Scholar
  30. 30.
    Luton, PE, Wayne, JM, Sharp, RJ, Riley, PW 2002The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill.Microbiology14835213530PubMedGoogle Scholar
  31. 31.
    Nercessian, D, Upton, M, Lloyd, D, Edwards, C 1999Phylogenetic analysis of peat bog methanogen populations.FEMS Microbiol Lett173425429CrossRefGoogle Scholar
  32. 32.
    Nüsslein, B, Chin, KJ, Eckert, W, Conrad, R 2001Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel).Environ Microbiol3460470CrossRefPubMedGoogle Scholar
  33. 33.
    Ohkuma, M, Noda, S, Horikoshi, K, Kudo, T 1995Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus.FEMS Microbiol Lett1344550CrossRefPubMedGoogle Scholar
  34. 34.
    Ramakrishnan, B, Lueders, T, Dunfield, PF, Conrad, R, Friedrich, MW 2001Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production.FEMS Microbiol Ecol37175186CrossRefGoogle Scholar
  35. 35.
    Scheid, D, Stubner, S, Conrad, R 2003Effects of nitrate- and sulfate-amendment on the methanogenic populations in rice roots incubations.FEMS Microbiol Ecol43309315CrossRefGoogle Scholar
  36. 36.
    Shannon, RD, White, JR 1996The effects of spatial and temporal variations in acetate and sulfate on methane cycling in two Michigan peatlands.Limnol Oceanogr41435443Google Scholar
  37. 37.
    Sigren, LK, Lewis, ST, Fisher, FM, Sass, RL 1997Effects of field drainage on soil parameters related to methane production and emission from rice paddies.Global Biogeochem Cycles11151162Google Scholar
  38. 38.
    Springer, E, Sachs, MS, Woese, CR, Boone, DR 1995Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae.Int J Syst Bacteriol45554559Google Scholar
  39. 39.
    Watanabe, A, Takeda, T, Kimura, M 1999Evaluation of origins of CH4 carbon emitted from rice paddies.J Geophys Res1042362323629CrossRefGoogle Scholar
  40. 40.
    Weber, S, Lueders, T, Friedrich, MW, Conrad, R 2001Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil.FEMS Microbiol Ecol381120CrossRefGoogle Scholar
  41. 41.
    Wu, XL, Chin, KJ, Conrad, R 2002Effect of temperature stress on structure and function of the methanogenic archaeal community in a rice field soil.FEMS Microbiol Ecol39211218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • K. -J. Chin
    • 1
  • T. Lueders
    • 1
  • M. W. Friedrich
    • 1
  • M. Klose
    • 1
  • R. Conrad
    • 1
    Email author
  1. 1.Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str., 35043 MarburgGermany

Personalised recommendations