Microbial Ecology

, Volume 47, Issue 1, pp 96–103

Engineering Root Exudation of Lotus toward the Production of Two Novel Carbon Compounds Leads to the Selection of Distinct Microbial Populations in the Rhizosphere

Article

Abstract

The culture of opine-producing transgenic Lotus plants induces the increase in the rhizosphere of bacterial communities that are able to utilize these molecules as sole carbon source. We used transgenic Lotus plants producing two opines, namely mannopine and nopaline, to characterize the microbial communities directly influenced by the modification of root exudation. We showed that opine-utilizers represent a large community in the rhizosphere of opine-producing transgenic Lotus. This community is composed of at least 12 different bacterial species, one third of which are able to utilize the opine mannopine and two thirds the opine nopaline. Opine utilizers are diverse, belonging to the Gram-positive and -negative bacteria. We described two novel mannopine-utilizing species, Rhizobium and Duganella spp., and five novel nopaline-utilizing species, Duganella, Afipia, Phyllobacterium, Arthrobacter, and Bosea spp. Although opine utilizers mostly belong to the α-Proteobacteria, Rhizobiaceae family, there is little overlap between the populations able to utilize each of the two opines produced by the plants. Noticeably, in the rhizosphere of transgenic Lotus, only the opine mannopine favors the growth of Agrobacteriumtumefaciens, the bacterium from which opines have been characterized. The diversity of opine utilizers from the rhizosphere of Lotus plants is greater than that observed from any other environment. Therefore, transgenic plants with engineered exudation constitute an excellent tool to isolate and characterize specific microbial populations.

References

  1. 1.
    Barber, DA, Martin, JK 1974The release of organic substances by cereal roots into soil.New Phytol766980Google Scholar
  2. 2.
    Baudoin, E, Benizri, E, Guckert, A 2001Metabolic structure of bacterial communities from distinct maize rhizosphere compartments.Eur J Soil Biol378593CrossRefGoogle Scholar
  3. 3.
    Baudoin, E, Benizri, E, Guckert, A 2002Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting.Appl Soil Ecol19135145CrossRefGoogle Scholar
  4. 4.
    Beaulieu, C, Coulombe, LJ, Granger, RL, Miki, B, Beauchamp, G, Rossignol, G, Dion, P 1983Characterization of opine-utilizing bacteria isolated from Quebec.Phytoprotection646168Google Scholar
  5. 5.
    Bell, CR, Moore, LW, Canfield, ML 1991

    In vitro studies on the interactions on Agrobacterium spp. and Pseudomonas spp. isolated from opine environments.

    Keister, DLCregan, PB eds. The Rhizosphere and Plant Growth.Kluwer AcademicDordrecht386
    Google Scholar
  6. 6.
    Canfield, ML, Moore, LW 1991Isolation and characterization of opine-utilizing strains of Agrobacterium tumefaciens and fluorescent strains of Pseudomonas spp from rootstocks of Malus.Phytopathology81440443Google Scholar
  7. 7.
    Clare, BG, Kerr, A, Jones, DA 1990Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease.Plasmid23126137PubMedGoogle Scholar
  8. 8.
    Curl, EATruelove, B eds. 1986The Rhizosphere, vol 15, Advanced Series in Agricultural Sciences.Springer-VerlagBerlin288Google Scholar
  9. 9.
    Dessaux, Y, Petit, A, Tempé, J 1992

    Opines in Agrobacterium biology.

    Verna, DPS eds. Molecular Signals in Plant–Microbe Communications.CRC PressBoca Raton, FL109136
    Google Scholar
  10. 10.
    Dessaux, Y, Petit, A, Tempé, J 1993Chemistry and biochemistry of opines, chemical mediators of paratism.Phytochemistry343138CrossRefGoogle Scholar
  11. 11.
    Di Battista-Leboeuf, C, Benizri, E, Corbel, C, Piutti, S, Guckert, A 2002Diversity of Pseudomonas sp. populations in relation to maize root location and growth stage.Agronomie..(in press)Google Scholar
  12. 12.
    Gäde, G 1980Biological role of octopine formation in marine mollucs.Mar Biol Lett1121135Google Scholar
  13. 13.
    Guyon, P, Petit, A, Tempé, J, Dessaux, Y 1993Transformed plants producing opines specifically promote growth of opine-degrading Agrobacteria.Mol Plant Microbe Interact69298Google Scholar
  14. 14.
    Hamlem, RA, Lukezic, FL, Bloom, JR 1972Influence of age and stage of development on the neutral carbohydrate components in root exudates from alfalfa plants grown in agnotobiotic environment.Can J Plant Sci52633642Google Scholar
  15. 15.
    Hiltner, L 1904Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brachte.Abs Dtsch Landwirt Ges985978Google Scholar
  16. 16.
    Kim, KS, Farrand, SK 1996Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.J Bacteriol17832753284PubMedGoogle Scholar
  17. 17.
    Lameta, AA, Jay, M 1987Study of soybean and lentil root exsudates.Plant Soil101267272Google Scholar
  18. 18.
    Lynch, JM, Whipps, JM 1991

    Substrate flow in the rhizosphere.

    Reister, DLCregan, PB eds. The Rhizosphere and Plant Growth.Kluwer AcademicDordrecht1524
    Google Scholar
  19. 19.
    Mansouri, M, Petit, A, Oger, P, Dessaux, Y 2002Engineered rhizophere: the trophic bias generated by opine-producing plants is independent of the opine-type, the soil origin and the plant species.Appl Environ Microbiol6825622566Google Scholar
  20. 20.
    McSpadden-Gardener, BB, Weller, DM 2001Changes in populations of rhizosphere bacteria associated with take-all disease of wheat.Appl Environ Microbiol6744144425CrossRefPubMedGoogle Scholar
  21. 21.
    Mougel, C 2000Structure génétique des populations d’Agrobacterium spp.: effet sélectif de la plante et implication dans la diffusion conjugative du plasmide Ti.Université Claude Bernard-Lyon1Lyon188Google Scholar
  22. 22.
    Nautiyal, CS, Dion, P, Chilton, WS 1991Mannopine and mannopinic acid as substrates for Arthrobacter sp. strain MBA209 and Pseudomonasputida NA513.J Bacteriol17328332841PubMedGoogle Scholar
  23. 23.
    O’Connell, KP, Goodman, RM, Handelsman, J 1996Engineering the rhizosphere: expressing a bias.Trends Biotechnol148388CrossRefGoogle Scholar
  24. 24.
    Oger, P, Mansouri, H, Dessaux, Y 2000Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines.Mol Ecol9881890CrossRefPubMedGoogle Scholar
  25. 25.
    Oger, P, Mansouri, H, Petit, A, Gardan, L, Dessaux, Y, Nesme, X 1998Sensitivity, resolution and limitation of the use of PCR-RFLP of the 16S rRNA gene for the identification of plant pathogenic and plant associated bacteria.Gen Select Evol30S311S332Google Scholar
  26. 26.
    Oger, P, Petit, A, Dessaux, Y 1997Genetically engineered plants producing opines alter their biological environment.Nature/Biotechnol15369372Google Scholar
  27. 27.
    Petit A, Dessaux Y, Tempé J (1978) The biological significance of opines. I. A study of opine catabolism by Agrobacterium tumefaciens. in Proc. 4th Int. Conf. Plant. Path. Bact, Angers, France, pp 43–47Google Scholar
  28. 28.
    Petit, A, Stougaard, J, Kühle, A, Marcker, KA, Tempé, J 1987Transformation and regeneration of the legume Lotus corniculatus: a system for molecular studies of symbiotic nitrogen fixation.Mol Gen Genet207245250Google Scholar
  29. 29.
    Picard, C, Ponsonnet, C, Paget, E, Nesme, X, Simonet, P 1992Detection and enumeration of bacteria in soil by direct DNA extraction.Appl Environ Microbiol5827172722PubMedGoogle Scholar
  30. 30.
    Rengel, Z, Ross, G, Hirsch, P 1998Plant genotype and micronutrients status influence colonization of wheat roots by soil bacteria.J Plant Nutrition2199113Google Scholar
  31. 31.
    Rovira, AD, Forster, RC, Martin, JK 1978

    Origin, nature and nomenclature of the organic materials in the rhizosphere.

    Harley, JLScott-Russell, R eds. The Root-Soil Interface.Academic PressLondon14
    Google Scholar
  32. 32.
    Sambrook, JFritsch, ERManiatis, T eds. 1989Molecular Cloning: A Laboratory Manual, 2nd ed.Cold Spring Harbor Laboratory PressCold Spring Harbor, New YorkGoogle Scholar
  33. 33.
    Sans, N, Schroder, G, Schroder, J 1987The noc region of Ti plasmid C58 codes for arginase and ornithine cyclodeaminase.Eur J Biochem1678187PubMedGoogle Scholar
  34. 34.
    Savka, MA 1993Validity of the opine concept in plant–bacterial interactions.University of Illinois at Urbana-ChampaignUrbana219Google Scholar
  35. 35.
    Savka, MA, Dessaux, Y, Oger, P, Rossbach, S 2002Engineering bacterial competitiveness and persistence in the phytosphere.Mol Plant Microbe Interact15866974PubMedGoogle Scholar
  36. 36.
    Savka, MA, Farrand, SK 1997Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource.Nature/Biotechnol15373377Google Scholar
  37. 37.
    Siciliano, SD, Theoret, CM, de Freitas, JR, Hucl, PJ, Germida, JJ 1998Differences in the microbial communities associated with the roots of different cultivars of canola and wheat.Can J Microbiol44844851CrossRefGoogle Scholar
  38. 38.
    Tremblay, G, Gagliardo, R, Chilton, WS, Dion, P 1987Diversity among opine-utilizing bacteria: Identification of Coryneform isolates.Appl Environ Microbiol5315191524Google Scholar
  39. 39.
    Vaudequin-Dransart, V, Petit, A, Poncet, C, Ponsonnet, C, Nesme, X, Jones, JB, Bouzar, H, Chilton, WS, Dessaux, Y 1995Novel Ti plasmids in Agrobacterium strains isolated from fig tree and chrysanthemum tumors and their opinelike molecules.Mol Plant Microbe Interact8311321PubMedGoogle Scholar
  40. 40.
    Whipps, JM, Lynch, JM 1985Energy losses by the plant in rhizodeposition.Ann Proc Phytochem Soc Eur265971Google Scholar
  41. 41.
    Wilson, M, Savka, MA, Hwang, I, Farrand, SK, Lindow, SE 1995Altered epiphytic colonization of mannityl opine-producing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae.Appl Environ Microbiol6121512158Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • P. M. Oger
    • 1
    • 2
    • 4
  • H. Mansouri
    • 1
  • X. Nesme
    • 3
  • Y. Dessaux
    • 1
  1. 1.Institut des Sciences du Végétal, CNRS, Gif sur Yvette F-91198France
  2. 2.Laboratoire de Sciences de la TerreEcole Normale Supérieure, Lyon F-69364France
  3. 3.Laboratoire d’Ecologie MicrobienneUniversité Lyon I-Claude Bernard, Villeurbanne F-69622France
  4. 4. Laboratoire de Sciences de la Terre, Ecole Normale Supérieure, 46, Allée d’Italie, F-69364 Lyon cedex 07France

Personalised recommendations