Microbial Ecology

, Volume 47, Issue 1, pp 18–29 | Cite as

Quantitative Importance, Composition, and Seasonal Dynamics of Protozoan Communities in Polyhaline versus Freshwater Intertidal Sediments

  • I. Hamels
  • K. Sabbe
  • K. Muylaert
  • W. Vyverman


The quantitative importance and composition of protozoan communities was investigated in sandy and silty intertidal sediments of a polyhaline and a freshwater site in the Schelde estuary. Total biomass of the protozoans studied, integrated over the upper 4 cm of the sediment, ranged from 41 to 597 mg C m−2 and was in the same order of magnitude at the polyhaline and the freshwater intertidal site. Nanoheterotrophs were the dominant protozoans, in terms of both abundance and biomass. Ciliate abundances appeared to be largely determined by physical constraints, namely, the amount of interstitial space and hydrodynamic disturbances. It remains unclear which factors control nanoheterotrophic abundances and biomasses, which showed comparatively little seasonal and between-site fluctuations. Salinity differences were clearly reflected in the protozoan community composition. The dominant role of sessile ciliates is a unique feature of sediments in the freshwater tidal reaches, which can be attributed to the dynamic nature of sedimentation and resuspension processes associated with the maximum turbidity zone. Based on biomass ratios and estimated weight-specific metabolic rates, protozoa possibly accounted for ~29 to 96% of the estimated combined metabolic rate of protozoan and metazoan consumers at our sampling stations in late spring/early autumn. The contribution of protozoa to this combined metabolic rate was higher at the sandy than at the silty stations and was mainly accounted for by the nanoheterotrophs. These data emphasize the potential importance of small protozoa in sediments and suggest that protozoa are important components of benthic food webs.


Intertidal Sediment Silty Station Ciliate Community Heterotrophic Dinoflagellate Protozoan Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was performed in the frameworks of the EU Environment & Climate programme ECOFLAT (ENV4-CT96-0216), which is part of the ELOISE programme (publication no. 406/23), the FWO research project no. G.0104.99 and the GOA research project no. 1205398. I.H. acknowledges a grant from the Fund for Scientific Research—Flanders (FWO); K.S. and K.M. are postdoctoral fellows of the same Fund. Thanks to Dirk van Gansbeke for chlorophyll and nutrient analyses. We also thank the Netherlands Institute of Ecology—Centre for Estuarine and Coastal Ecology (NIOO-CEMO) for the use of the RV Luctor. Prof. P.M.J. Herman, M. Steyaert, and Drs. C. Barranguet and J. Seys kindly provided data on the biota and the oxygen conditions at the sampling stations.


  1. 1.
    Abril, G, Nogueira, M, Etcheber, H, Cabeçadas, G, Lemaire, E, Brogueira, MJ 2002Behaviour of organic carbon in nine contrasting European estuaries.Estuar Coast Shelf Sci54241262CrossRefGoogle Scholar
  2. 2.
    Alongi, DM 1990Abundances of benthic microfauna in relation to outwelling of mangrove detritus in a tropical coastal region.Mar Ecol Prog Ser635363Google Scholar
  3. 3.
    Arndt, H, Dietrich, D, Auer, B, Cleven, E-J, Gräfenhan, T, Weitere, M, Mylnikov, AP 2000Functional diversity of heterotrophic flagellates in aquatic ecosystems.Leadbeater, BSCGreen, JC eds. The Flagellates.Taylor & FrancisLondon240268Google Scholar
  4. 4.
    Bak, RPM, Nieuwland, G 1989Seasonal fluctuations in benthic protozoan populations at different depths in marine sediments.Neth J Sea Res243744CrossRefGoogle Scholar
  5. 5.
    Bak, RPM, Nieuwland, G 1993Patterns in pelagic and benthic nanoflagellate densities in the coastal upwelling system along the Banc d’Arguin, Mauritania.Hydrobiologia258119131Google Scholar
  6. 6.
    Bak, RPM, Nieuwland, G 1997Seasonal variation in bacterial and flagellate communities of deep-sea sediments in a monsoonal upwelling system.Deep-Sea Res II4412811292CrossRefGoogle Scholar
  7. 7.
    Bak, RPM, van Duyl, FC, Nieuwland, G, Kop, AJ 1991Benthic heterotrophic nanoflagellates in North Sea field mesocosm bottoms and their response to algal sedimentation.Ophelia33187196Google Scholar
  8. 8.
    Baldock, BM, Sleigh, MA 1988The ecology of benthic protozoa in rivers: seasonal variation in numerical abundance in fine sediments.Arch Hydrobiol111409421Google Scholar
  9. 9.
    Boenigk, J, Arndt, H 2002Bacterivory by heterotrophic flagellates: community structure and feeding strategies.Antonie van Leeuwenhoek Int J Gen Molec Microbiol81465480CrossRefGoogle Scholar
  10. 10.
    Børsheim, KY, Bratbak, G 1987Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater.Mar Ecol Prog Ser36171175Google Scholar
  11. 11.
    Bratbak, G, Dundas, I 1984Bacterial dry matter content and biomass estimations.Appl Environ Microbiol48755757PubMedGoogle Scholar
  12. 12.
    Cammen, LM, Walker, JA 1986The relationship between bacteria and microalgae in the sediment of a Bay of Fundy mudflat.Estuar Coast Shelf Sci229199Google Scholar
  13. 13.
    Coull, BC 1999Role of meiofauna in estuarine soft-bottom habitats.Australian J Ecol24327343CrossRefGoogle Scholar
  14. 14.
    de Jonge, VN 1980Fluctuations in the organic carbon to chlorophyll a ratios for estuarine benthic diatom populations.Mar Ecol Prog Ser2345353Google Scholar
  15. 15.
    Dietrich, D, Arndt, H 2000Biomass partitioning of benthic microbes in a Baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates.Mar Biol136309322CrossRefGoogle Scholar
  16. 16.
    Epstein, SS 1997aMicrobial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities.Microb Ecol34188198CrossRefGoogle Scholar
  17. 17.
    Epstein, SS 1997bMicrobial food webs in marine sediments. II. Seasonal changes in trophic interactions in a sandy tidal flat community.Microb Ecol34199209CrossRefGoogle Scholar
  18. 18.
    Fenchel, T 1967The ecology of marine microbenthos. I. The quantitative importance of ciliates as compared with metazoans in various types of sediments.Ophelia4121137Google Scholar
  19. 19.
    Fenchel, T 1969The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa.Ophelia61182Google Scholar
  20. 20.
    Fenchel, T 1974Intrinsic rate of natural increase: the relationship with body size.Oecologia14317326Google Scholar
  21. 21.
    Fenchel, T 1975The quantitative importance of the benthic microfauna of an arctic tundra pond.Hydrobiologia46445464Google Scholar
  22. 22.
    Fenchel, T 1987Ecology of protozoa: The Biology of Free-Living Phagotrophic Protists.Science Tech, Madison, wl, and Springer-VerlagBerlinGoogle Scholar
  23. 23.
    Finlay, BJ, Tellez, C, Esteban, G 1993Diversity of free-living ciliates in the sandy sediment of a Spanish stream in winter.J Gen Microbiol13928552863Google Scholar
  24. 24.
    Foissner, W, Blatterer, H, Berger, H, Kohmann, F 1992Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems. Band II: Peritrichia, Heterotrichida, Odontostomatida.Bayerisches Landesamt für WasserwirtschaftMünchenGoogle Scholar
  25. 25.
    Garstecki, T, Verhoeven, R, Wickham, SA, Arndt, H 2000Benthic–pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic.Freshwat Biol45147167CrossRefGoogle Scholar
  26. 26.
    Gasol, JM 1993Benthic flagellates and ciliates in fine freshwater sediments: calibration of a live counting procedure and estimation of their abundances.Microb Ecol25247262Google Scholar
  27. 27.
    Goulder, R 1971Vertical distribution of some ciliated protozoa in two freshwater sediments.Oikos22199203Google Scholar
  28. 28.
    Greenberg, AE, Clesceri, LS, Eaton, AS 1992Standard methods for the examination of water and wastewater.American Public Health AssociationWashingtonGoogle Scholar
  29. 29.
    Hamels, I, Muylaert, K, Casteleyn, G, Vyverman, W 2001Uncoupling of bacterial production and flagellate grazing in aquatic sediments: a case study from an intertidal flat.Aquat Microb Ecol253142PubMedGoogle Scholar
  30. 30.
    Hamels, I, Sabbe, K, Muylaert, K, Barranguet, C, Lucas, C, Herman, P, Vyverman, W 1998Organisation of microbenthic communities in intertidal estuarine flats, a case study from the Molenplaat (Westerschelde estuary, the Netherlands).Eur J Protistol34308320Google Scholar
  31. 31.
    Hansen, JA, Alongi, DM 1991Bacterial productivity and benthic standing stocks in a tropical coastal embayment.Mar Ecol Prog Ser68301310Google Scholar
  32. 32.
    Heip, CHR, Goosen, NK, Herman, PMJ, Kromkamp, J, Middelburg, JJ, Soetaert, K 1995Production and consumption of biological particles in temperate tidal estuaries.Oceanogr Mar Biol Annu Rev331149Google Scholar
  33. 33.
    Herman, PMJ, Middelburg, JJ, Van De Koppel, J, Heip, CHR 1999Ecology of estuarine macrobenthos.Adv Ecol Res29195240Google Scholar
  34. 34.
    Herman, PMJ, Middelburg, JJ, Widdows, J, Lucas, CH, Heip, CHR 2000Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos.Mar Ecol Prog Ser2047992Google Scholar
  35. 35.
    Hondeveld, BJM, Bak, RPM, van Duyl, FC 1992Bacterivory by heterotrophic nanoflagellates in marine sediments measured by uptake of fluorescently labeled bacteria.Mar Ecol Prog Ser896371Google Scholar
  36. 36.
    Hondeveld, BJM, Nieuwland, G, van Duyl, FC, Bak, RPM 1994Temporal and spatial variations in heterotrophic nanoflagellate abundance in North Sea sediments.Mar Ecol Prog Ser109235243Google Scholar
  37. 37.
    Hondeveld, BJM, Nieuwland, G, van Duyl, FC, Bak, RPM 1995Impact of nanoflagellate bacterivory on benthic bacterial production in the North Sea.Neth J Sea Res34275287CrossRefGoogle Scholar
  38. 38.
    John, DM, Johnson, LR, Moore, JA 1990Observations on the phytobenthos of the freshwater Thames. III. The floristic composition and seasonality of algae in the tidal and non-tidal river.Arch Hydrobiol120143168Google Scholar
  39. 39.
    Kuwae, T, Hosokawa, Y 1999Determination of abundance and biovolume of bacteria in sediments by dual staining with 4′,6-diamidino-2-phenylindole and acridine orange: relationship to dispersion treatment and sediment characteristics.Appl Environ Microbiol6534073412PubMedGoogle Scholar
  40. 40.
    Lee, WJ, Patterson, DJ 2002Abundance and biomass of heterotrophic flagellates, and factors controlling their abundance and distribution in sediments of Botany Bay.Microb Ecol43467481CrossRefPubMedGoogle Scholar
  41. 41.
    Little, C 2000The Biology of Short Shores and Estuaries.Oxford University PressOxford, UKGoogle Scholar
  42. 42.
    Lucchesi, P, Santangelo, G 1997The interstitial ciliate microcommunity of a Mediterranean sandy shore under differing hydrodynamic disturbances.Ital J Zool64253259PubMedGoogle Scholar
  43. 43.
    Mantoura, RFC, Llewellyn, CA 1983The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography.Anal Chim Acta151297314Google Scholar
  44. 44.
    Middelburg, JJ, Klaver, G, Nieuwenhuize, J, Wielemaker, A, de Haas, W, Vlug, T, van der Nat, JFWA 1996Organic matter mineralization in intertidal sediments along an estuarine gradient.Mar Ecol Prog Ser132157168Google Scholar
  45. 45.
    Montagnes, DJS, Lynn, DH 1993A quantitative protargol stain (QPS) for ciliates and other protists.Kemp, PFSherr, BFSherr, EBCole, JJ eds. Handbook of Methods in Aquatic Microbial Ecology.Lewis PublishersBoca Raton, FLGoogle Scholar
  46. 46.
    Muylaert, K, Van Kerckvoorde, A, Vyverman, W, Sabbe, K 1997Structural characteristics of phytoplankton in tidal and non-tidal freshwater systems: a case study from the Schelde basin, Belgium.Freshwat Biol38263276CrossRefGoogle Scholar
  47. 47.
    Muylaert, K, Van Mieghem, R, Sabbe, K, Tackx, M, Vyverman, W 2000Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary.Hydrobiologia4322536CrossRefGoogle Scholar
  48. 48.
    Muylaert, K, Van Nieuwerburgh, L, Sabbe, K, Vyverman, W 2002Microphytobenthos communities in the freshwater tidal to brackish reaches of the Schelde estuary (Belgium).Belg J Bot1351526Google Scholar
  49. 49.
    Packroff, G, Zwick, P 1998The ciliate fauna of an unpolluted German foothill stream, the Breitenbach. II. Quantitative aspects of the ciliates (Ciliophora, Protozoa) in fine sediments.Eur J Protistol34436445Google Scholar
  50. 50.
    Patterson, DJ, Larsen, J, Corliss, JO 1989The ecology of heterotrophic flagellates and ciliates living in marine sediments.Prog Protistol3185277Google Scholar
  51. 51.
    Sanders, RW, Wickham, SA 1993Planktonic protozoa and metazoa: predation, food quality and population control.Mar Microb Food Webs7197223Google Scholar
  52. 52.
    Seys, J, Vincx, M, Meire, P 1999Spatial distribution of oligochaetes (Clitellata) in the tidal freshwater and brackish parts of the Schelde estuary (Belgium).Hydrobiologia406119132CrossRefGoogle Scholar
  53. 53.
    Sherr, EB, Sherr, BF 1993Preservation and storage of samples for enumeration of heterotrophic protists.Kemp, PFSherr, BFSherr, EBCole, JJ eds. Handbook of Methods in Aquatic Microbial Ecology.Lewis PublishersBoca Raton, FL207212Google Scholar
  54. 54.
    Sherr, EB, Sherr, BF 1994Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs.Microb Ecol28223235Google Scholar
  55. 55.
    Sleigh, MA, Baldock, BM, Baker, JH 1992Protozoan communities in chalk streams.Hydrobiologia2485364Google Scholar
  56. 56.
    Starink, M, Bär-Gilissen, MJ, Bak, RPM, Cappenberg, TE 1994Quantitative centrifugation to extract benthic protozoa from freshwater sediments.Appl Environ Microbiol60167173Google Scholar
  57. 57.
    Starink, M, Bär-Gilissen, MJ, Bak, RPM, Cappenberg, TE 1996Seasonal and spatial variations in heterotrophic nanoflagellate and bacteria abundances in sediments of a freshwater littoral zone.Limnol Oceanogr41234242Google Scholar
  58. 58.
    Tso, SF, Taghon, GL 1997Enumeration of protozoa and bacteria in muddy sediment.Microb Ecol33144148CrossRefPubMedGoogle Scholar
  59. 59.
    Underwood, GJC, Kromkamp, J 1999Primary production by phytoplankton and microphytobenthos in estuaries.Adv Ecol Res2993153Google Scholar
  60. 60.
    van Duyl, FC, Bak, RPM, Kop, AJ, Nieuwland, G, Berghuis, EM, Kok, A 1992Mesocosm experiments: mimicking seasonal developments of microbial variables in North Sea sediments.Hydrobiologia235267281Google Scholar
  61. 61.
    van Duyl, FC, Kop, AJ 1990Seasonal patterns of bacterial production and biomass in intertidal sediments of the western Dutch Wadden Sea.Mar Ecol Prog Ser59249261Google Scholar
  62. 62.
    Yamamoto, N, Lopez, G 1985Bacterial abundance in relation to surface area and organic content of marine sediments.J Exp Mar Biol Ecol90209220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Biology, Section of Protistology and Aquatic EcologyUniversity of Gent, Krijgslaan 281-S8, B-9000 GentBelgium

Personalised recommendations