Microbial Ecology

, Volume 46, Issue 4, pp 416–428

Characterisation of Yeasts Isolated from Deep Igneous Rock Aquifers of the Fennoscandian Shield

  • S. Ekendahl
  • A. H. O’Neill
  • E. Thomsson
  • K. Pedersen
Article

Abstract

The diversity of prokaryotes in the groundwater deep below the surface of the Baltic Sea at the Äspö Hard Rock Laboratory (HRL) in southeast Sweden is well documented. In addition, there is some evidence that eukaryotes, too, are present in the deep groundwater at this site, although their origins are uncertain. To extend the knowledge of eukaryotic life in this environment, five yeast, three yeastlike, and 17 mold strains were isolated from Äspö HRL groundwater between 201 and 444 m below sea level. Phenotypic testing and phylogenetic analysis of 18S rDNA sequences of the five yeast isolates revealed their relationships to Rhodotorula minuta and Cryptococcus spp. Scanning and transmission electron microscopy demonstrated that the strains possessed morphological characteristics typical for yeast, although they were relatively small, with an average length of 3 µm. Enumeration through direct counting and most probable number methods showed low numbers of fungi, between 0.01 and 1 cells mL−1, at some sites. Five of the strains were characterized physiologically to determine whether they were adapted to life in the deep biosphere. These studies revealed that the strains grew within a pH range of 4–10, between temperatures of 4°C and 25–30°C, and in NaCl concentrations from 0 to 70 g L−1. These growth parameters suggest a degree of adaptation to the groundwater at Äspö HRL. Despite the fact that these eukaryotic microorganisms may be transient members of the deep biosphere microbial community, many of the observations of this study suggest that they are capable of growing in this extreme environment.

References

  1. 1.
    Balkwill, DL 1989Numbers, diversity, and morphological-characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina.Geomicrobiol J73352Google Scholar
  2. 2.
    Berbee, ML, Carmean, DA, Winka, K 2000Ribosomal DNA and resolution of branching order among the ascomycota: how many nucleotides are enough?Mol Phylogenet Evol17337344CrossRefPubMedGoogle Scholar
  3. 3.
    Berbee, ML, Taylor, JW 1995From 18S ribosomal sequence data to evolution of morphology among the fungi.Can J Bot73S677S683Google Scholar
  4. 4.
    Boekhout, T 1998

    Diagnostic descriptions and key to presently accepted heterobasidiomycetous genera.

    Kurtzman, CPFell, JW eds. The Yeasts: A Taxonomic Study.Elsevier Science Publishers BVAmsterdam627634
    Google Scholar
  5. 5.
    Bowman, B, Taylor, J, Brownlee, A, Lee, J, Lu, S-D, White, T 1992Molecular evolution of the fungi: relationships of the Basidiomycetes, Ascomycetes, and Chytridiomycetes.Mol Biol Evol9285296PubMedGoogle Scholar
  6. 6.
    DSM, catalogue of strains (1993) DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, GermanyGoogle Scholar
  7. 7.
    Fell, JW 1976

    Yeasts in oceanic regions.

    Jones, EBG eds. Recent Advances in Aquatic Mycology.Elek ScienceLondon93124
    Google Scholar
  8. 8.
    Felsenstein, J 1985Confidence limits on phylogenies: an approach using the bootstrap.Evolution39783791Google Scholar
  9. 9.
    Felsenstein, J 1989PHYLIP—Phylogeny Inference Package (Version 3.2).Cladistics5164166Google Scholar
  10. 10.
    Fliermans, CB 1989Microbial life in the terrestrial subsurface of southeastern coastal plain sediments.Haz Waste Haz Mat6155171Google Scholar
  11. 11.
    Fredrickson, JK, Onstott, TC 1996Microbes deep inside the earth.Sci Am2754247PubMedGoogle Scholar
  12. 12.
    Freeman, K 1970Inhibition of mitochondrial and bacterial protein synthesis by chloramphenicol.Can J Biochem48479PubMedGoogle Scholar
  13. 13.
    Ghiorse, WC, Balkwill, DL 1983Enumeration and morphological characterisation of bacteria indigenous to subsurface environments.Develop Industr Microbiol24213224Google Scholar
  14. 14.
    Ghiorse, WC, Wilson, JT 1988Microbial ecology of the terrestrial subsurface.Adv Appl Microbiol33107172PubMedGoogle Scholar
  15. 15.
    Gueho, E, Improvisi, L, Christen, R, Dehoog, GS 1993Phylogenetic relationships of Cryptococcus-Neoformans and some related basidiomycetous yeasts determined from partial large subunit ribosomal-RNA sequences.Antonie Van Leeuwenhoek63175189PubMedGoogle Scholar
  16. 16.
    Hagler, AN, Aheard, DG 1987

    Ecology of aquatic yeasts.

    Rose, AHHarrison, JS eds. The Yeasts.Academic PressLondon181205
    Google Scholar
  17. 17.
    Haveman, SA, Pedersen, K 2002Distribution of cultivable microorganisms in Fennoscandian Shield groundwater.FEMS Microbiol Ecol39129137CrossRefGoogle Scholar
  18. 18.
    Hayman, E, Yokoyama, H, Chichester, C, Simpson, K 1974Carotenoid biosynthesis in Rhodotorula glutinis.J Bacteriol12013391343PubMedGoogle Scholar
  19. 19.
    Hirsch, P, Eckhardt, FEW, Palmer Jr, RJ 1995Fungi active in weathering of rock and stone monuments.Can J Bot73S138490Google Scholar
  20. 20.
    Hungate, RE 1969A roll tube method for the cultivation of strict anaerobes.Methods Microbiol38117132Google Scholar
  21. 21.
    Jongmans, AG, van Breemen, N, Lundström, U, van Hees, PAW, Finlay, RD, Srinivasan, M, Unestam, T, Giesler, R, Melkerud, P-A, Olsson, M 1997Rockeating fungi.Nature389682683CrossRefGoogle Scholar
  22. 22.
    Jukes, TH, Cantor, CR 1969

    Evolution of protein molecules.

    Munro, H eds. Mammalian Protein Metabolism.Academic PressNew York21132
    Google Scholar
  23. 23.
    Kalyuzhanaya, MG, Khmelenina, VN, Kotelnikova, S, Holmquist, L, Pedersen, K 1999Methylomonas scandinavica sp nov., a new methanotrophic psychrotophic bacterium isolated from deep igneous rock groundwater of Sweden.Syst Appl Microbiol22565572PubMedGoogle Scholar
  24. 24.
    Kimura, M 1980A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.J Mol Evol16111120PubMedGoogle Scholar
  25. 25.
    Kotelnikova, S, Pedersen, K 1998Distribution and activity of methanogens and homoacetogens in deep granitic aquifers at Aspo Hard Rock Laboratory, Sweden.FEMS Microbiol Ecol26121134CrossRefGoogle Scholar
  26. 26.
    Laaksoharju, M, Tullborg, EL, Wikberg, P, Wallin, B, Smellie, J 1999Hydrogeochemical conditions and evolution at the Äspö HRL, Sweden.Appl Geochem14835859CrossRefGoogle Scholar
  27. 27.
    Lachance, MA, Starmer, WT 1998

    Ecology and yeasts.

    Kurtzman, CPFell, JW eds. The Yeasts: A Taxonomic Study.Elsevier ScienceAmsterdam2130
    Google Scholar
  28. 28.
    Lanave, C, Preparata, G, Saccone, C, Serio, G 1984A new method for calculating evolutionary substitution rates.J Mol Evol208693PubMedGoogle Scholar
  29. 29.
    Madsen, EL, Ghiorse, WC 1993

    Groundwater microbiology: subsurface ecosystem processes.

    Ford, TE eds. Aquatic Microbiology, an Ecological Approach.Blackwell Scientific PublicationsCambridge, MAs167213
    Google Scholar
  30. 30.
    Morris, EO 1968Yeasts of marine origin.Oceanogr Mar Biol Ann Rev6201230CrossRefGoogle Scholar
  31. 31.
    Nagahama, T, Hamamoto, M, Nakase, T, Horikoshi, K 1999Kluyveromyces nonfermentans sp nov., a new yeast species isolated from the deep sea.Int J Syst Bacteriol4918991905Google Scholar
  32. 32.
    Nagahama, T, Hamamoto, M, Nakase, T, Horikoshi, K 2001Rhodotorula lamellibrachii sp nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sagami Bay and its phylogenetic analysis.Antonie van Leeuwenhoek80317323CrossRefPubMedGoogle Scholar
  33. 33.
    Nagahama, T, Hamamoto, M, Nakase, T, Takami, H, Horikoshi, K 2001Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean.Antonie van Leeuwenhoek80101110CrossRefPubMedGoogle Scholar
  34. 34.
    Ogram, A, Sun, W, Brockman, FJ, Fredrickson, JK 1995Isolation and characterisation of RNA from low-biomass deep subsurface sediments.Appl Environ Microbiol61763768PubMedGoogle Scholar
  35. 35.
    Palmer, FE, Emery, DR, Stemmler, J, Stanley, JT 1987Survival and growth of microcolonial rock fungi as affected by temperature and humidity.New Phytologist107155162Google Scholar
  36. 36.
    Pedersen, K 1993The deep subterranean biosphere.Earth Sci Rev34243260CrossRefGoogle Scholar
  37. 37.
    Pedersen, K 2000Exploration of deep intraterrestrial microbial life: current perspectives.FEMS Microbiol Lett185916PubMedGoogle Scholar
  38. 38.
    Pedersen, K 2001

    Diversity and activity of micoorganisms in deep igneous rock aquifers of the Fennoscandian Shield.

    Fredrickson, JKFletcher, M eds. Subsurface Microbiology and Biogeochemistry.Wiley-LissNew York97139
    Google Scholar
  39. 39.
    Pedersen, K, Arlinger, J, Ekendahl, S, Hallbeck, L 199616S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Äspö Hard Rock Laboratory.FEMS Microbiol Ecol19249262CrossRefGoogle Scholar
  40. 40.
    Pedersen, K, Ekendahl, S 1990Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden.Microb Ecol203752Google Scholar
  41. 41.
    Pedersen, K, Ekendahl, S 1992Assimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from Southeastern Sweden deep crystalline bedrock.Microb Ecol23114Google Scholar
  42. 42.
    Pedersen, K, Hallbeck, L, Arlinger, J, Erlandson, A-C, Jahromi, N 1997Investigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing methods.J Microbiol Methods30179192CrossRefGoogle Scholar
  43. 43.
    Petterson C, Ephraim J, Allard B, Borén H, Characterisation of humic substances from deep groundwaters in granitic bedrock in Sweden. 1990, Available from 8KB, Box 5864, 10248 Stockholm, Sweden: SKB technical report 90-29Google Scholar
  44. 44.
    Rades-Rohkol, E, Hirsch, P, Fränzle, O 1979Neutron activation analysis for the demonstration of amphibolite rock-weathering activity of a yeast.Appl Environ Microbiol3810611068Google Scholar
  45. 45.
    Richards, M, Elliot, FR 1966Inhibition of yeast growth by streptomycin.Nature209536PubMedGoogle Scholar
  46. 46.
    Seifert, KA, Wingfield, BD, Wingfield, MJ 1995A critique of DNA sequence analysis in the taxonomy of filamentous Ascomycetes and ascomycetous anamorphs.Can J Bot73S760S767Google Scholar
  47. 47.
    Sinclair, JL, Ghiorse, WC 1989Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments.Geomicrobiol J71531Google Scholar
  48. 48.
    Spencer, JFT, Spencer, DM 1997

    Ecology: where yeasts live.

    Spencer, JFTSpencer, DM eds. Yeasts in Natural and Artificial Habitats.Springer-VerlagBerlin3357
    Google Scholar
  49. 49.
    Spurr, A 1969A low viscosity epoxy resin embedding medium for electron microscopy.J Ultrastruct Res263143PubMedGoogle Scholar
  50. 50.
    Sterflinger, K, Krumbein, WE 1995Multiple stress factors affecting growth of rock-inhabiting black fungi.Bot Acta108490496Google Scholar
  51. 51.
    Strunk, O, Gross, O, Reichel, B, May, S, Hermann, S, Struckmann, B, Nonhoff, M, Lenke, M, Vilbig, A, Ludwig, T, Bode, A, Schleifer, KH, Ludwig, W 1998ARB: a software environment for sequence data.Department of Microbiology, Technische Universität MüinchenGermanyGoogle Scholar
  52. 52.
    Swofford, DL 1998PAUP* version 4.0.0 d64 for Macintosh.SinauerSunderland, MAGoogle Scholar
  53. 53.
    Thomas-Hall, S, Watson, K, Scorzetti, G 2002Cryptococcus statzelliae sp nov and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic soils.Int J Syst Evol Microbiol5223032308CrossRefPubMedGoogle Scholar
  54. 54.
    Towner, KJ 1992

    The genus Acinetobacter.

    Balows, ATruper, HGDworkin, MHarder, WSchleifer, K-H eds. The-Prokaryotes.Springer-VerlagNew York31373143
    Google Scholar
  55. 55.
    Valente, P, Ramos, JP, Leoncini, O 1999Sequencing as a tool in yeast molecular taxonomy.Can J Microbiol45949958CrossRefPubMedGoogle Scholar
  56. 56.
    White, TJ, Bruns, T, Lee, S, Taylor, JW 1990

    Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.

    PCR Protocols: A Guide to Methods and Applications.Academic PressSan Diego
    Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • S. Ekendahl
    • 1
  • A. H. O’Neill
    • 1
  • E. Thomsson
    • 1
  • K. Pedersen
    • 1
  1. 1.Department of Cell and Molecular Biology (CMB), MicrobiologyGöteborg University, Box 462, SE 405 30, GöteborgSweden

Personalised recommendations