Microbial Ecology

, Volume 47, Issue 2, pp 137–149 | Cite as

Microbial Astronauts: Assembling Microbial Communities for Advanced Life Support Systems

Article

Abstract

Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments “everything is everywhere” given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment.

References

  1. 1.
    Atlas, RM, Horowitz, A, Krichevsky, MI, Bej, AK 1991Response of microbial populations to environmental disturbance.Microb Ecol22249256Google Scholar
  2. 2.
    Awasthi, N, Ahuja, R, Kumar, A 2000Factors influencing the degradation of soil-applied endosulfan isomers.Soil Biol Biochem3216971705CrossRefGoogle Scholar
  3. 3.
    Baas Becking, LGM 1934Geobiologie of inleiding tot de milieukunde Diligentia Wetensch.Van Stockum’sGravenhageGoogle Scholar
  4. 4.
    Bengtsson, J 1998Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function.Appl Soil Ecology10191199CrossRefGoogle Scholar
  5. 5.
    Berg, RD 1996The indigenous gastrointestinal microflora.TRENDS Microbiol4430435CrossRefPubMedGoogle Scholar
  6. 6.
    Besnard, V, Federighi, M, Declerq, E, Jugiau, F, Cappelier, JM 2002Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes.Vet Res33359370CrossRefPubMedGoogle Scholar
  7. 7.
    Bitton, B 1999Wastewater Microbiology.Wiley and SonsNew York186Google Scholar
  8. 8.
    Bruno, JF, Stachowicz, JJ, Bertness, MD 2003Inclusion of facilitation into ecological theory.TRENDS Ecol Evol18119125CrossRefGoogle Scholar
  9. 9.
    Caipo, ML, Duffy, S, Zhao, L, Schaffner, DW 2002Bacillus megaterium spore germination is influenced by inoculum size.J Appl Microbiol92879884CrossRefPubMedGoogle Scholar
  10. 10.
    Canganella, F, Ovidi, M, Paganini, S, Vettraino, AM, Bevilacqua, L, Trovatelli, LD 1998Survival of undesirable micro-organisms in fruit yoghurts during storage at different temperatures.Food Microbiol157177CrossRefGoogle Scholar
  11. 11.
    Chao, L, Cox, EC 1983Competition between high and low mutating strains of Escherichia coli.Evolution37125134Google Scholar
  12. 12.
    Cohan, FM 1994The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes.Am Naturalist143965986CrossRefGoogle Scholar
  13. 13.
    Cohan, FM 1994Genetic exchange and evolutionary divergence in prokaryotes.Trends Ecol Evol9175180CrossRefGoogle Scholar
  14. 14.
    Cohan, FM 1996The role of genetic exchange in bacterial evolution.ASM News62631636Google Scholar
  15. 15.
    Cohan, FM 2001Bacterial species and speciation.Syst Biol50513524CrossRefPubMedGoogle Scholar
  16. 16.
    Cohan, FM 2002What are bacterial species?Ann Rev Microbiol56457487CrossRefGoogle Scholar
  17. 17.
    Cook KL, Garrett V, Layton AC, Dionisi HM, Sayler GS, Garland JL (2003) Development and molecular characterization of microbial inocula for initiation of graywater waste processing systems on long-term space flights. In press, International Conference on Environmental Systems, SAE Technical Paper 2003-01-2512Google Scholar
  18. 18.
    Corpe, WA, Rheem, S 1989Ecology of the methylotrophic bacteria on living leaf surfaces.FEMS Microbiol Ecol62243250CrossRefGoogle Scholar
  19. 19.
    Curtis, TP, Sloan, WT, Scannel, JW 2002Estimating prokaryotic diversity and its limits.Proc Nat Acad Sci USA991049110499CrossRefGoogle Scholar
  20. 20.
    Dojka, MA, Harris, JK, Pace, NR 2000Expanding diversity and environmental distribution of an uncultured phylogenetic division of Bacteria.Appl Environ Microbiol66l6171621CrossRefGoogle Scholar
  21. 21.
    Dunbar, J, Barns, S, Ticknor, MLO, Kuske, CR 2002Empirical and theoretical bacterial diversity in four Arizona soils.Appl Env Microbiol6830353045CrossRefGoogle Scholar
  22. 22.
    Dykhuizen, DE, Dean, AM 1994Predicted fitness changes along an environmental gradient.Evol Ecol8524541Google Scholar
  23. 23.
    Dykhuizen, DE 1998Santa Rosalia revisited: Why are there so many species of bacteria?Antonie van Leeuwenhoek732533CrossRefPubMedGoogle Scholar
  24. 24.
    Edelman, GM, Galley, JA 2001Degeneracy and complexity in biological systems.Proc Nat Acad Sci USA981376313768CrossRefPubMedGoogle Scholar
  25. 25.
    Elton, CS 1927Animal Ecology.Sidgwick and JacksonLondonGoogle Scholar
  26. 26.
    Fernández, A, Huang, S, Seston, S, Xing, J, Hickey, R, Griddle, C, Tiedje, JM 1999How stable is stable? Function versus community composition.Appl Environ Microbiol6536973704PubMedGoogle Scholar
  27. 27.
    Fernández, AS, Hashsham, SA, Dollhopf, SL, Raskin, L, Glagoleva, O, Dazzo, FB, Hickey, RF, Criddle, CS, Tiedje, JM 2000Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose.Appl Environ Microbiol6640584067PubMedGoogle Scholar
  28. 28.
    Frank, DN, Spiegelman, GB, Davis, W, Wagner, E, Lyons, E, Pace, NR 2003Culture-independent molecular analysis of microbial constituents of the healthy human outer ear.J Clin Microbiol41295303CrossRefPubMedGoogle Scholar
  29. 29.
    Franklin, RB, Garland, JL, Bolster, CH, Mills, AL 2001Impact of dilution on microbial community structure and functional potential: Comparison of numerical simulations and batch culture experiments.Appl Environ Microbiol67702712CrossRefPubMedGoogle Scholar
  30. 30.
    Garland, JL, Lehman, RM 1999Dilution/extinction of community phenotypic characters to estimate relative structural diversity in mixed communities.FEMS Microbiol Ecol30333343CrossRefPubMedGoogle Scholar
  31. 31.
    Garland JL, Mills AL, Morales A, Cook KL (1999) Survival of human-associated bacteria in prototype Advanced Life Support systems. International Conference on Environmental Systems, SAE Technical Paper 1999-01-2061Google Scholar
  32. 32.
    Garland, JL, Cook, KL, Adams, JL, Kerkhof, L 2001Culturability as an indicator of succession in microbial communities.Microb Ecol42150158PubMedGoogle Scholar
  33. 33.
    Gray, TRG, Williams, ST 1975Soil Microorganisms.LongmanNew York144Google Scholar
  34. 34.
    Griesemer, JR 1992

    Niche: historical perspectives

    Lloyd, EA eds. Keywords in Evolutionary Biology.Harvard University PressCambridge, MA231240
    Google Scholar
  35. 35.
    Grinnell, J 1917The niche-relationships of the California Thrasher.Auk34427433Google Scholar
  36. 36.
    Groisman, EA, Ochman, H 1996Pathogenicity islands: bacterial evolution in quantum leaps.Cell87791794PubMedGoogle Scholar
  37. 37.
    Hashsham, SA, Fernández, AS, Dollhopf, SL, Dazzo, FB, Hickey, RF, Tiedje, JM, Criddle, CS 2000Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose.Appl Environ Microbiol6640504057CrossRefPubMedGoogle Scholar
  38. 38.
    Hayashi, H, Sakamoto, M, Benno, Y 2002Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods.Microbiol Immunol46535548PubMedGoogle Scholar
  39. 39.
    Hill, J, Weigert, RG 1980

    Microcosms in ecological modeling.

    Giesy, JP eds. Microcosms in Ecological Research. US Department of Energy, Symp. 52.National Information ServiceSpringfield, VA138163
    Google Scholar
  40. 40.
    Hirano, SS, Upper, CD 2000Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte.Microbiol Mol Biol Rev64624653PubMedGoogle Scholar
  41. 41.
    Horneck, G 1999Impact of microgravity on radiobiological processes and efficiency of DNA repair.Mutation Res430221228CrossRefPubMedGoogle Scholar
  42. 42.
    Hubbell, SP 200lThe Unified Neutral Theory of Biodiversity and Biogeography.Princeton University PressPrinceton, NJGoogle Scholar
  43. 43.
    Hughes, JB, Hellmann, JJ, Rickets, TH, Bohannon, BJM 2001Counting the uncountable: statistical approaches to estimating microbial diversity.Appl Environ Microbiol6743994406CrossRefPubMedGoogle Scholar
  44. 44.
    Hutchinson, GE 1957Concluding remarks. Cold Spring Harbor Symposium.Quant Biol22415427Google Scholar
  45. 45.
    Jackson, CR, Roden, EE, Churchill, PF 1998Changes in bacterial species composition in enrichment cultures with various dilutions of inoculum as monitored by Denaturing Gradient Gel Electrophoresis.Appl Environ Microbiol6450465048PubMedGoogle Scholar
  46. 46.
    Kaeberlein, T, Lewis, K, Epstein, SS 2002Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment.Science29611271129CrossRefPubMedGoogle Scholar
  47. 47.
    Kerr, B, Riley, MA, Feldman, MW, Bohannan, BJM 2002Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors.Nature418171174CrossRefGoogle Scholar
  48. 48.
    Kimura, M 1967On the evolutionary adjustment of spontaneous mutation rates.Genet Res92334Google Scholar
  49. 49.
    Kimura, M 1983The neutral theory of molecular evolution.Cambridge University PressNew YorkGoogle Scholar
  50. 50.
    Kinkel, LL, Wilson, M, Lindow, SE 2000Plant species and plant incubation conditions influence variability in epiphytic bacterial population size.Microb Ecol39111CrossRefPubMedGoogle Scholar
  51. 51.
    LeClerc, JE, Li, B, Payne, WL, Cebula, T 1996High mutation frequencies among Escherichia coli and Salmonella pathogens.Science27412081211CrossRefPubMedGoogle Scholar
  52. 52.
    Legard, DE, McQuilken, MP, Whipps, JW, Fenlon, JS, Fermor, TR, Thompson, IP, Bailey, MJ, Lynch, JM 1994Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganism.Agric Ecosyst Environ5087101CrossRefGoogle Scholar
  53. 53.
    Lindow, SE, Leveau, JH 2002Phyllosphere microbiology.Curr Opin Biotechnol13238243CrossRefPubMedGoogle Scholar
  54. 54.
    Lohrke, SM, Madrzak, CJ, Hur, HG, Judd, AK, Orf, JH, Sadowsky, MJ 2000Short communication—Inoculum density-dependent restriction of nodulation in the soybean–Bradyrhizohium japonicum symbiosis.Symbiosis295970Google Scholar
  55. 55.
    Loreau, M, Naeem, S, Inchausti, P, Bengtsson, J, Grime, JP, Hector, A, Hooper, DU, Huston, MA, Raffaelli, D, Schmid, B, Tilman, D, Wardle, DA 2001Biodiversity and ecosystem functioning: current knowledge and future challenges.Science294804808PubMedGoogle Scholar
  56. 56.
    MacArthur, RH, Wilson, EO 1963An equilibrium theory of insular biogeography.Evolution17373387Google Scholar
  57. 57.
    MacArthur, RH, Wilson, EO 1967The Theory of Island Biogeography.Princeton University PressPrinceton, N.J.Google Scholar
  58. 58.
    Margalef, R 1963On certain unifying principles in ecology.Am Naturalist97357374CrossRefGoogle Scholar
  59. 59.
    Margalef, R 1968Perspectives in Ecological Theory.University of Chicago PressChicagoGoogle Scholar
  60. 60.
    McGrady-Steed, J, Harris, PM, Morin, PJ 1997Biodiversity regulates ecosystem predictability.Nature390162165Google Scholar
  61. 61.
    Mercier, J, Lindow, SE 2000Role of leaf surface sugars in colonization of plants by bacterial epiphytes.Appl Environ Microbiol66369374Google Scholar
  62. 62.
    Mills, AL, Mallory, L 1987Community structure changes in epilithic bacterial communities stressed by acid mine drainage.Microb Ecol14219232Google Scholar
  63. 63.
    Mills, AL, Garland, JL 2002

    Application of physiological profiles ot assessment of community properties

    Hurst, CJ eds. Manual of Environmental Microbiology.2ASM PressWashington, DC135146
    Google Scholar
  64. 64.
    Naeem, S, Li, S 1997Biodiversity enhances ecosystem reliability.Nature390507509CrossRefGoogle Scholar
  65. 65.
    Nakatsu, C, Korona, R, Lenski, RE, Bruijn, FJ, Marsh, TL, Forney, LJ 1998Parallel and divergent genotypic evolution in experimental populations of Ralstonia sp.J Bacteriol18043254331PubMedGoogle Scholar
  66. 66.
    Neidhardt, FC, Ingraham, JL, Schaechter, M 1990Physiology of the Bacterial Cell: A Molecular Approach.Sinauer AssociatesSunderland, MAGoogle Scholar
  67. 67.
    Ochman, H, Lawrence, JG, Groisman, EA 2000Lateral gene transfer and the nature of bacterial innovation.Nature405299304PubMedGoogle Scholar
  68. 68.
    Odum, EP 1983Basic Ecology.Saunders College PublishingPhiladelphiaGoogle Scholar
  69. 69.
    Parke, D, D’Argenio, DA, Ornston, LN 2000Bacteria are not what they eat: That is why they are so diverse.J Bacteriol182257263CrossRefPubMedGoogle Scholar
  70. 70.
    Parkin, TB 1993Spatial variability of microbial processes in soil—a review.J Environ Qual22409417Google Scholar
  71. 71.
    Paul, EA, Clark, FE 1989Soil Microbiology and Biochemistry.Academic PressNew YorkGoogle Scholar
  72. 72.
    Pickett, STA 1976Succession: an evolutionary interpretation.Am Naturalist110107119CrossRefGoogle Scholar
  73. 73.
    Pickett, STA, Collins, SL, Armesto, JJ 1987A hierarchical consideration of causes and mechanisms of succession.Vegetation69109114Google Scholar
  74. 74.
    Pimm, SL 1984The complexity and stability of ecosystems.Nature307321326Google Scholar
  75. 75.
    Rainey, PB, Travisano, M 1998Adaptive radiation in a heterogeneous environment.Nature3946972CrossRefPubMedGoogle Scholar
  76. 76.
    Rainey, PB, Buckling, A, Kassin, R, Travisano, M 2000The emergence and maintenance of diversity: insights from experimental bacterial populations.Trends Ecol15243247CrossRefGoogle Scholar
  77. 77.
    Rappe, MS, Giovannoni, SJ 2003The uncultured microbial majority.Ann Rev Microbiol57369394CrossRefGoogle Scholar
  78. 78.
    Recorbet, G, Steinberg, C, Faurie, G 1992Survival in soil of genetically engineered Escherichia coli as related to inoculum density, predation and competition.FEMS Microbiol Ecol101251260CrossRefGoogle Scholar
  79. 79.
    Riley, M 1999

    Correlates of smallest sizes for microorganisms.

    eds. Size Limits of Very Small Microorganisms.National Academies Press.2125
    Google Scholar
  80. 80.
    Riley, MS, Cooper, VS, Lenski, RE, Forney, LJ, Marsh, TL 2001Rapid phenotypic change and diversification of a soil bacterium during 1000 generations of experimental evolution.Microbiology1479951006PubMedGoogle Scholar
  81. 81.
    Rosenzweig, RF, Sharp, RR, Treves, DS, Adams, J 1994Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli.Genetics137903917PubMedGoogle Scholar
  82. 82.
    Rummel, JD 2001Planetary exploration in the time of astrobiology: protecting against biological contamination.Proc Nat Acad Sci USA9821282131CrossRefPubMedGoogle Scholar
  83. 83.
    Savage, DC 1977Microbial ecology of the gastrointestinal tract.Ann Rev Microbiol31107133CrossRefGoogle Scholar
  84. 84.
    Schwartz, MW, Brigham, CA, Hoeksema, JD, Lyons, KG, Mills, MH, van Mantgem, PJ 2000Linking biodiversity to ecosystem function: implications for conservation ecology.Oecologia122297305CrossRefGoogle Scholar
  85. 85.
    Sniegowski, P 1997Evolution: setting the mutation rate.Curr Biol7R487R488PubMedGoogle Scholar
  86. 86.
    Sniegowski, P, Gerrish, PJ, Lenski, RE 1997Evolution of high mutation rates in experimental populations of Escherichia coli.Nature387703705CrossRefPubMedGoogle Scholar
  87. 87.
    Strayer, RF 1991

    Microbiological characterization of the biomass production chamber during hydroponic growth of crops at the Controlled Ecological Life Support System (CELSS) breadboard facility.

    SAE Technical Paper Series, No. 911427.SAE Technical Paper SeriesWarrendale, PA3548
    Google Scholar
  88. 88.
    Suau, A, Bonnet, R, Sutren, M, Godon, JJ, Gibson, GR, Collins, MD, Dore, J 1999Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut.Appl Environ Microbiol6547994807PubMedGoogle Scholar
  89. 89.
    Taddei, F, Radman, M, Smith, JM, Toupance, B, Gouyon, PH, Godelle, B 1997Role of mutator alleles in adaptive evolution.Nature387700702CrossRefPubMedGoogle Scholar
  90. 90.
    Thompson, IP, Bailey, MJ, Fenlon, JS, Fermor, TR, Lilley, AK, Lynch, JM, McCormack, PJ, McQuilken, MP, Purdy, KJ, Rainey, PB, Whipps, JM 1993Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris).Plant Soil150177191Google Scholar
  91. 91.
    Tilman, D, Downing, JA 1994Biodiversity and stability in grasslands.Nature367363365CrossRefGoogle Scholar
  92. 92.
    Tilman, D 1996Biodiversity: population versus ecosystem stability.Ecology76786894Google Scholar
  93. 93.
    Torsvik, V, Goksoyr, J, Daae, FL 1990High diversity of DNA of soil bacteria.Appl Environ Microbiol56782787PubMedGoogle Scholar
  94. 94.
    Treves, DS, Manning, S, Adams, J 1998Repeated evolution of an acetate cross feeding polymorphism in long-term populations of Escherichia coli.Mol Biol Evol15789797PubMedGoogle Scholar
  95. 95.
    Trolldenier, G, Rheinbaben, W 1981Root respiration and bacterial population of roots I. Effect of nitrogen source, potassium nutrition and aeration of roots.Zeitschr Plfanzenernahrung Bodenkunde144366377Google Scholar
  96. 96.
    Vandoorne, H, Devringer, T 1994Effect of inoculum size on survival rate of Candida albicans and Aspergillus niger in topical preparations.Lett Appl Microbiol18289291Google Scholar
  97. 97.
    Venkateswaran, K, Satomi, M, Chung, S, Kern, R, Koukol, R, Basic, C, White, DC 2001Molecular microbial diversity of a spacecraft assembly facility.Syst Appl Microbiol24311320PubMedGoogle Scholar
  98. 98.
    Vulic, M, Dionisio, F, Taddei, F, Radman, M 1997Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria.Proc Nat Acad Sci USA9497639767Google Scholar
  99. 99.
    Wagner, M, Amann, R, Lemmer, H, Schleifer, KH 1995Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure.Appl Environ Microbiol5915201525Google Scholar
  100. 100.
    Wagner, M, Loy, A, Nogueira, R, Purkhold, U, Lee, N, Daims, H 2002Microbial community composition and function in wastewater treatment plants.Antonie van Leeuwenhoer81665680Google Scholar
  101. 101.
    Warren, TM, Williams, V, Fletcher, M 1992Influence of solid-surface, adhesive ability, and inoculum size on bacterial-colonization in microcosm studies.Appl Environ Microbiol5829542959Google Scholar
  102. 102.
    Whitman, WB, Coleman, DC, Wiebe, WJ 1998Prokaryotes: the unseen majority.Proc Natl Acad Sci USA9565786583PubMedGoogle Scholar
  103. 103.
    Whittaker, RH 1953A consideration of climax theory: the climax as a population and pattern.Ecol Monogr234178Google Scholar
  104. 104.
    Yang, CH, Crowley, DE, Borneman, J, Keen, NT 2001Microbial phyllosphere populations are more complex than previously realized.Proc Natl Acad Sci USA9838893894CrossRefPubMedGoogle Scholar
  105. 105.
    Yatagai, F, Saito, T, Takahashi, A, Fujie, A, Nagaoka, S, Sato, M, Ohnishi, T 2000rpsL mutation induction after space flight on MIR.Mutation Res45314CrossRefPubMedGoogle Scholar
  106. 106.
    Zhou, J, Xia, B, Treves, DS, Wu, L-Y, Marsh, TL, O’Neill, RV, Palumbo, AV, Tiedje, JM 2002Spatial and resource factors influencing high microbial diversity in soil.Appl Environ Microbiol68326334Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Dynamac Inc.USA
  2. 2.Office of Biological ResearchJohn F. Kennedy Space CenterUSA
  3. 3.Laboratory of Microbial EcologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations