Microbial Ecology

, Volume 47, Issue 3, pp 224–235 | Cite as

Filamentous Fungi: the Indeterminate Lifestyle and Microbial Ecology

  • D. A. KleinEmail author
  • M. W. Paschke


The filamentous fungi have dynamic and variable hyphal structures within which cytoplasm can be moved, synthesized, and degraded, in response to changes in environmental conditions, resource availability, and resource distribution. Their study has gone through several phases. In the first phase, direct observation was emphasized without undue concern for interior structures or in the presence of cytoplasm. By the mid-1970s, single biochemical proxies (ergosterol, marker fatty acids, chitin derivatives, etc.) were being used increasingly. The use of these surrogate single measurements continues, in spite of their inability to provide information on the physical structure of the filamentous fungi. Molecular approaches also are being used, primarily through the use of bulk nucleic acid extraction and cloning. Because the sources of the nucleic acids used in such studies usually are not known, taxonomic and phylogenetic information derived by this approach cannot be linked to specific fungal structures. Recently, a greater emphasis has been placed on assessing physical aspects of indeterminate fungal growth, involving the assessment of cytoplasm-filled and evacuated (empty) hyphae. Both of these parameters are important for describing filamentous fungal growth and function. The use of phase contrast microscopy and varied general stains, as well as fluorogenic substrates with observation by epifluorescence microscopy, has made it possible to provide estimates of cytoplasm-filled hyphal lengths. Using this approach, it has been possible to evaluate the responses of the indeterminate fungal community to changes in environmental conditions, including soil management. It is now possible to obtain molecular information from individual bacteria and fungal structures (hyphae, spores, fruiting bodies) recovered from environments, making it possible to link individual fungal structures with their taxonomic and phylogenetic information. In addition, this information can be considered in the context of the indeterminate filamentous fungal lifestyle, involving the dynamics of resource allocation to hyphal structural development and synthesis of cytoplasm. Use of this approach should make it possible to gain a greater appreciation of the indeterminate filamentous fungal lifestyle, particularly in the context of microbial ecology.


Filamentous Fungus Ergosterol Fungal Community Fungal Biomass Agar Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was carried out with support from the USDA-NRICCP under project 93-37101-8601, and by USDOD-SERDP project CS-1145. The assistance of Darci Burchers with laboratory analyses, of Mark Lombard and Paul Swartzinski with field sampling, and of Katy Carl with the rendering of Fig. 1 is deeply appreciated. The authors thank the anonymous reviewers for their helpful comments.


  1. 1.
    Alef, K 1993Bestimmung mikrobieller Biomasse im Boden: Eine kritische Betrachtung.Z Pflanzenernähr Bodenk156109114Google Scholar
  2. 2.
    Anderson, JB, Kohn, LM 1998Genotyping, gene genealogies and genomics bring fungal population genetics above ground.TREE13444448CrossRefGoogle Scholar
  3. 3.
    Anderson, JPE, Domsch, KH 1973Quantification of bacterial and fungal contributions to soil respiration.Arch Mikrobiol931131271Google Scholar
  4. 4.
    Anderson, JR, Westmoreland, . 1971Direct counts of soil organisms using a fluorescent brightener and a europium chelate.Soil Biol Biochem38587CrossRefGoogle Scholar
  5. 5.
    Bääth, E 1988Autoradiographic determination of metabolically-active fungal hyphae in forest soil.Soil Biol Biochem20123125CrossRefGoogle Scholar
  6. 6.
    Bääth, E, Söderström, B 1980Comparisons of the agar-film and membrane-filter methods for the estimation of hyphal lengths in soil, with particular reference to the effect of magnification.Soil Biol Biochem12385387CrossRefGoogle Scholar
  7. 7.
    Bardgett, RD, Lovell, RD, Hobbs, PJ, Jarvis, SC 1999Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands.Soil Biol Biochem3110211030CrossRefGoogle Scholar
  8. 8.
    Bardgett, RD, McAlister, E 1999The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands.Biol Fertil Soils29282290CrossRefGoogle Scholar
  9. 9.
    Beare, MH, Pohlad, BR, Wright, DH, Coleman, DC 1993Residue placement and fungicide effects on fungal communities in conventional and no-tillage soils.Soil Sci Soc Am J57392399Google Scholar
  10. 10.
    Berg, MP, Kniese, JP, Verhoef, HA 1998Dynamics and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil.Biol Fertil Soils26313322CrossRefGoogle Scholar
  11. 11.
    Bingle, WH, Paul, EA 1985A method for separating fungal hyphae from soil.Can J Microbiol326266Google Scholar
  12. 12.
    Boddington, CL, Bassett, EE, Jakobson, I, Dodd, JC 1999Comparison of techniques for the extraction and quantification of extra-radical mycelium of arbuscular mycorrhizal fungi in soils.Soil Biol Biochem31482CrossRefGoogle Scholar
  13. 13.
    Borneman, J, Skroch, PW, O’Sullivan, KM, Palus, JA, Rumhanek, NG, Jansen, JL, Nienhaus, J, Triplett, EW 1996Molecular microbial diversity of an agricultural soil in Wisconsin.Appl Environ Microbiol6219351943PubMedGoogle Scholar
  14. 14.
    Brock, TD 1987The study of microorganisms in situ: progress and problems.Fletcher, MGray, TRGJones, JG eds. Ecology of Microbial Communities.Cambridge University PressCambridge, UK117Google Scholar
  15. 15.
    Brussaard, L, Behan-Pelletier, VM, Bignell, DE, Brown, VK, Didden, W, Folgarait, P, Fragoso, C, Freckman, DW, Gupta, VV, Hattori, T, Hawksworth, DL, Klopatek, C, Lavelle, P, Malloch, DW, Rusek, J, Söderström, B, Tiedje, JM, Virginia, RA 1997Biodiversity and ecosystem functioning in soil.Ambio26563570Google Scholar
  16. 16.
    Carlisle, MJ 1995The success of the hypha and mycelium.Gow, NARGadd, GM eds. The Growing Fungus.Chapman & HallLondon219Google Scholar
  17. 17.
    Chantigny, MH, Angers, DA, Prévost, D, Vézina, L-P, Chalifour, F-P 1997Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems.Soil Sci Soc Am J61292267Google Scholar
  18. 18.
    Chelius, MK, Triplett, EW 1999Rapid detection of arbuscular mycorrhizae in roots and soil of an intensively managed turfgrass system by PCR amplification of small subunit rRNA.Mycorrhiza96164CrossRefGoogle Scholar
  19. 19.
    Christensen, M 1989A view of fungal ecology.Mycologia81112Google Scholar
  20. 20.
    Claassen, VP, Zasoski, RJ, Tyler, BM 1996A method for direct soil extraction and PCR amplification of endomycorrhizal fungal DNA.Mycorrhiza6447450CrossRefGoogle Scholar
  21. 21.
    Cliff, JB, Gaspar, DJ, Bottomley, PJ, Myrold, DD 2002Exploration of inorganic C and N assimilation by soil microbes with time-of-flight secondary ion mass spectrometry.Appl Environ Microbiol6840674073CrossRefPubMedGoogle Scholar
  22. 22.
    Conn HJ (1918) The microscopic study of bacteria and fungi in soil. NY Agr Expt Sta, Tech Bull no 64. Jan 1918. [cited in 116, p. 451]Google Scholar
  23. 23.
    Conn, HJ 1922Microscopic method for demonstrating fungi and actinomycetes in soil.Soil Sci14149152Google Scholar
  24. 24.
    Daniell, TJ, Husband, R, Fitter, AH, Young, JPW 2001Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops.FEMS Microbiol Ecol36203209CrossRefPubMedGoogle Scholar
  25. 25.
    Davidson, FA 1998Modelling the qualitative response of fungal mycelia to heterogeneous environments.J Theoretical Biol195281CrossRefGoogle Scholar
  26. 26.
    Deacon, JW 1997Modern Mycology.Blackwell ScientificLondon303Google Scholar
  27. 27.
    Degens, BP, Sparling, GP, Abbott, LK 1996Increasing the length of hyphae in a sandy soil increases the amount of water-stable aggregates.Appl Soil Ecol3149159CrossRefGoogle Scholar
  28. 28.
    Dickie, IA, Up, B, Koide, RT 2002Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis.New Phytol156527535CrossRefGoogle Scholar
  29. 29.
    Domsch, KH, Beck, TH, Anderson, JPE, Söderström, B, Parkinson, D, Trolldenier, G 1979A comparison of methods for soil microbial population and biomass studies.Zeits Pflanzenernähr Bodenk142520533Google Scholar
  30. 30.
    Ekblad, A, Wallander, H, Näsholm, T 1998Chitin and ergosterol combined to measure total and living fungal biomass in ectomyorrhizas.New Phytol138143149CrossRefGoogle Scholar
  31. 31.
    Eren, J, Pramer, D 1966Application of immunofluorescent staining to studies of the ecology of soil microorganisms.Soil Sci1013945Google Scholar
  32. 32.
    Eren, J, Pramer, D 1968Use of a fluorescent brightener as aid to studies of fungistasis and nematophagous fungi in soil.Phytopathology58644646Google Scholar
  33. 33.
    Ezawa, T, Smith, SE, Smith, FA 2001Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi.New Phytol149555563CrossRefGoogle Scholar
  34. 34.
    Frankland, JC 1974Importance of phase-contrast microscopy for estimation of total fungal biomass by the agar-film technique.Soil Biol Biochem6409410CrossRefGoogle Scholar
  35. 35.
    Frankland, JC 1975Estimation of live fungal biomass.Soil Biol Biochem7339340CrossRefGoogle Scholar
  36. 36.
    Frankland, JC 1990Ecological methods of observing and quantifying soil fungi.Trans Mycol Soc Japan3189101Google Scholar
  37. 37.
    Frankland, JC, Dighton, J, Boddy, L 1990Methods for studying fungi in soil and forest litter.Gigorova, RNorris, JR eds. Methods in Microbiology, Vol. 22Academic PressLondon343404Google Scholar
  38. 38.
    Fröhlich, J, König, H 1999Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator.Syst Appl Microbiol22157249Google Scholar
  39. 39.
    Gooday, GW 1995The dynamics of hyphal growth.Mycol Res99385394Google Scholar
  40. 40.
    Griffin, DM 1972Ecology of Soil Fungi.Syracuse University PressSyracuse17Google Scholar
  41. 41.
    Griffin, DM 1985A comparison of the roles of bacteria and fungi.Leadbetter, ERPoindexter, JS eds. Bacteria in Nature, vol 1.Plenum PressNew York221255Google Scholar
  42. 42.
    Griffith, MB, Perry, SA 1994Fungal biomass and leaf litter processing in streams of different water chemistry.Hydrobiologia2945161Google Scholar
  43. 43.
    Harney, SK, Edwards, FS, Allen, MF 1997Identification of arbuscular mycorrhizal fungi from Artemisia californica using the polymerase chain reaction.Mycologia89547550Google Scholar
  44. 44.
    Hasebe, A, Kanazawa, S, Takai, Y 1984Microbial biomass in paddy soil.Soil Sci Plant Nutrit30175187Google Scholar
  45. 45.
    Hassar, M, Corkidi, G, Galindo, E, Flores, C, Serrano-Carrenon, L 2002Accurate and rapid viability assessment of Trichoderma harzianum using fluorescence-based digital image analysis.Biotech Bioeng80677684CrossRefGoogle Scholar
  46. 46.
    Hassink, J, Lebbink, G, vanVeen, JA 2001Microbial biomass and activity of a reclaimed-polder soil under a conventional or a reduced-input farming system.Soil Biol Biochem23507513CrossRefGoogle Scholar
  47. 47.
    Heath, IB 2001Bridging the divide: cytoskeleton-plasma membrane-cell wall interactions in growth and development.Howard, RJGow, NAR eds. The Mycota. VIII. Biology of the Fungal Cell.Springer-VerlagBerlin201223Google Scholar
  48. 48.
    Heath, IB, Steinberg, G 1999Mechanisms of hyphal tip growth tube dwelling amoebae revisited.Fungal Genet Biol287093CrossRefGoogle Scholar
  49. 49.
    Hirsch, PR 1972Neue Methoden zur Beobachtung und Isolierung ungewöhnlicher oder wenig bekannter Wasserbakterien.Zeitsch Allg Mikrobiol12203218Google Scholar
  50. 50.
    Holland, EA, Coleman, DC 1987Litter placement effects on microbial and organic matter dynamics in an agroecosystem.Ecology68425433Google Scholar
  51. 51.
    Ingham, ER, Coleman, DC 1984Effects of streptomycin, cycloheximide, fungizone, captan, carbofurane, cygon and PCNB on soil microorganisms.Microb Ecol10345358Google Scholar
  52. 52.
    Ingham, ER, Klein, DA 1982Relationship between fluorescein diacetate-stained hyphae and oxygen utilization, glucose utilization, and biomass of submerged fungal batch cultures.Appl Environ Microbiol44363370PubMedGoogle Scholar
  53. 53.
    Ingham, ER, Klein, DA 1984Soil fungi: relationships between hyphal activity and staining with fluorescein diacetate.Soil Biol Biochem16273278CrossRefGoogle Scholar
  54. 54.
    Jarstfer, AG, Sylvia, DM 2002Isolation, culture, and detection of arbuscular mycorrhizal fungi.Hurst, CJCrawford, RLKnudsen, GRMcInerney, MJStetzenbach, LD eds. Manual of Environmental Microbiology.ASM PressWashington, DC535542Google Scholar
  55. 55.
    Jenkinson, DS, Ladd, JN 1981Microbial biomass in soil: measurement and turnover.Paul, EALadd, JN eds. Soil Biochemistry.Marcel DekkerNew York415471Google Scholar
  56. 56.
    Johnstone, KI 1969The isolation and cultivation of single organisms.Methods Microbiol1455471Google Scholar
  57. 57.
    Jones, PCT, Mollison, JE 1948A technique for the quantitative estimation of soil microorganisms.J Gen Microbiol25469Google Scholar
  58. 58.
    Kjøller, A, Struwe, S 1982Microfungi in ecosystems: fungal occurrence and activity in litter and soil.Oikos39391422Google Scholar
  59. 59.
    Klein, DA, Frederick, BA, Redente, EF 1989Fertilizer effects on microbial communities and organic matter in the rhizosphere of Sitanion hystrix and Agropyron smithii.Arid Soil Res Rehab3397404Google Scholar
  60. 60.
    Klein, DA, McLendon, T, Paschke, MW, Redente, EF 1995Saprophytic fungal–bacterial growth pattern variations in successional communities of a semi-arid steppe ecosystem.Biol Fertil Soils19253256Google Scholar
  61. 61.
    Klein, DA, Paschke, MW 2000A soil microbial community structural-functional index: the microscopy-based Total/Active/Active/Fungal Bacterial (TA/AFB) biovolumes ratio.Appl Soil Ecol14257278CrossRefGoogle Scholar
  62. 62.
    Klein, DA, Paschke, MW, Redente, EF 1998Assessment of fungal–bacterial development in a successional shortgrass steppe by direct integration of chloroform-fumigation extraction (FE) and microscopically derived data.Soil Biol Biochem30573581CrossRefGoogle Scholar
  63. 63.
    Kough, JL, Linderman, RG 1986Monitoring extra-matrical hyphae of a vesicular–arbuscular mycorrhizal fungus with an immunofluorescence assay and the soil aggregation technique.Soil Biol Biochem18309313CrossRefGoogle Scholar
  64. 64.
    Kubiëna, WL 1938Micropedology.Collegiate PressAmes, IAGoogle Scholar
  65. 65.
    Lee, HK, Tewari, JP, Turkington, TK 2001A PCR-based assay to detect Rhynchosporium secalis, in barley seed.Plant Dis85220225Google Scholar
  66. 66.
    Lekkerkerk, L, Lundkvist, H, Ågren, GI, Ekbohm, G, Bosatta, E 1990Decomposition of heterogeneous substrates; an experimental investigation of a hypothesis on substrate and microbial properties.Soil Biol Biochem22161167CrossRefGoogle Scholar
  67. 67.
    Lin, Q, Brookes, PC 1996Comparison of methods to measure microbial biomass in unamended, ryegrass-amended and fumigated soils.Soil Biol Biochem28939CrossRefGoogle Scholar
  68. 68.
    Lodge, DJ 1987Nutrient concentrations, percentage moisture and density of field-collected fungal mycelia.Soil Biol Biochem19727733CrossRefGoogle Scholar
  69. 69.
    Lodge, DJ, Ingham, ER 1991A comparison of agar film techniques for estimating fungal biovolumes in litter and soil.Ag Ecosyst Environ34131144CrossRefGoogle Scholar
  70. 70.
    Martin-Laurent, F, Philoppot, L, Hallet, S, Chaussod, R, Germon, JC, Soulas, G, Catroux, G 2001DNA extraction from soils: old bias for new microbial diversity analysis methods.Appl Environ Microbiol6723542359CrossRefPubMedGoogle Scholar
  71. 71.
    McGonigle, TP, Miller, MH, Evans, DG, Fairchild, GL, Swan, JA 1990A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi.New Phytol115495496Google Scholar
  72. 72.
    McGonigle, TP, Miller, MH 1996Development of fungi below ground in association with plants growing in disturbed and undisturbed soils.Soil Biol Biochem28263269CrossRefGoogle Scholar
  73. 73.
    Merckx, RA, Martin, JK 1987Extraction of microbial biomass components from rhizosphere soils.Soil Biol Biochem19371376CrossRefGoogle Scholar
  74. 74.
    Miller, RH 1990Soil microbiological inputs for sustainable agricultural systems.Edwards, CALal, RMadden, PMiller, RHHouse, G eds. Sustainable Agricultural Systems. Soil and Water Conservation Society.Ankeny IA/St. Lucie PressBoca Raton, FL614623Google Scholar
  75. 75.
    Miller, M, Palojärvi, A, Rangger, A, Reeslev, M, Kjøller, A 1998The use of fluorogenic substrates to measure fungal presence in and activity in soil.Appl Environ Microbiol64613617PubMedGoogle Scholar
  76. 76.
    Morris, CE, Bardin, M, Berge, O, Fey-Klett, P, Fromin, N, Girardin, H, Guinebretière, M-H, Lebaron, P, Thiéry, JM, Troussellier, M 2002Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999.Microb Mol Biol Rev66592616CrossRefGoogle Scholar
  77. 77.
    Newell, SY, Fallon, RD, Miller, JD 1986Measuring fungal biomass dynamics in standing-dead leaves of a saltmarsh vascular plant.Moss, DT eds. The Biology of Marine Fungi.Cambridge University PressNew York1925Google Scholar
  78. 78.
    Newell, SY, Arsuffi, TL, Fallowfield, HJ 1988Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography.Appl Environ Microbiol5418761879Google Scholar
  79. 79.
    Newell, SY 1992Estimating fungal biomass and productivity in decomposing litter.Carroll, GCWicklow, DT eds. The Fungal Community. Its Organization and Role in the Ecosystem.Marcel DekkerNew York521561Google Scholar
  80. 80.
    Newell, SY 2001Fungal biomass and productivity.Methods Microbiol30357372CrossRefGoogle Scholar
  81. 81.
    Nicholas, DP, Parkinson, D 1967A comparison of methods for assessing the amount of fungal mycelium in soil samples.Pedobiologia72341Google Scholar
  82. 82.
    Nilsson, LO, Wallander, H 2003Production of external mycelium by ectomycorrhizal fungi in a norway spruce forest was reduced in response to nitrogen fertilization.New Phytol158409416Google Scholar
  83. 83.
    Norton, JM, Firestone, MK 1991Metabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings.Appl Environ Microbiol5711611167Google Scholar
  84. 84.
    Olson, FCW 1950Quantitative estimates of filamentous algae.Trans Am Microscop Soc69272279Google Scholar
  85. 85.
    Olsson, S, Hansson, BS 1995Action potential-like activity found in fungal mycelia is sensitive to stimulation.Naturwissenschaften823031CrossRefGoogle Scholar
  86. 86.
    Olsson, S 2001Colonial growth of fungi.Howard, RJGow, NAR eds. The Mycota. VIII. Biology of the Fungal Cell.Springer-VerlagHeidelberg125141Google Scholar
  87. 87.
    Pace, NR, Stahl, DA, Lane, DJ, Olsen, GJ 1986The analysis of natural microbial populations by ribosomal RNA sequences.Adv Microb Ecol9155Google Scholar
  88. 88.
    Pankhurst, CE, Ophel-keller, K, Doube, BM, Gupta, VVSR 1996Biodiversity of soil microbial communities in agricultural systems.Biodiversity Cons5301393Google Scholar
  89. 89.
    Paustian, K 1985Influence of fungal growth pattern on decomposition and nitrogen mineralization in a model system.Fitter, AHAtkinson, DRead, DJUsher, MB eds. Ecological Interactions in Soil: Plants, Microbes and Animals. Brit Ecol Soc Sp Pub 4.Blackwell ScientificOxford159174Google Scholar
  90. 90.
    Paustian, K, Schnürer, J 1987Fungal growth response to carbon and nitrogen limitation: a theoretical model.Soil Biol Biochem19613620CrossRefGoogle Scholar
  91. 91.
    Prosser, JI 1995Kinetics of filamentous growth and branching.Gow, NARGadd, CM eds. The Growing Fungus.Chapman & HallLondon301318Google Scholar
  92. 92.
    Ramsdale, M, Rayner, ADM 1997Ecological genetics.Wicklow, DTSöderström, BE eds. The Mycota IV.Springer-VerlagNew York1530Google Scholar
  93. 93.
    Rayner, AJR, Beeching, JD, Crowe, JC, Watkins, ZR 1999Defining individual fungal boundaries.Worrall, JJ eds. Structure and Dynamics of Fungal Populations.Kluwer AcademicNorwell, MA1942Google Scholar
  94. 94.
    Rayner, ADM, Boddy, L 1998Terrestrial fungal communities.Burlage, RSAtlas, RStahl, DGeesey, GSayler, G eds. Techniques in Microbial Ecology.Oxford University PressNew York163202Google Scholar
  95. 95.
    Rayner, ADM, Griffith, GS, Ainsworth, AM 1994Mycelial interconnectedness.Gow, NARGadd, GM eds. The growing fungus.Chapman & HallLondon2140Google Scholar
  96. 96.
    Robinson, CH, Wookey, PA 1997Microbial ecology, decomposition and nutrient cycling.Marquiss, MWoodin, SJ eds. Ecology of Arctic Environments. Spec Pub No 13, Brit Ecol Soc.Blackwell ScientificOxford4163Google Scholar
  97. 97.
    Schubert, A, Marzachi, C, Mazzitelli, M, Cravero, MC, Bonfante-Fasolo, P 1987Development of total and viable extraradical mycelium in the vesicular–arbuscular mycorrhizal fungus Glomus clarum Nicol. & Schenck.New Phytol107183190Google Scholar
  98. 98.
    Seitz, LM, Mohr, HE, Burroughs, R, Sauer, DB 1977Ergosterol as an indicator of fungal invasion in grains.Cereal Chem5412071217Google Scholar
  99. 99.
    Shapiro, JA, Dworkin, M 1997Bacteria as Multicellular Organisms.Oxford University PressNew YorkGoogle Scholar
  100. 100.
    Sharma, AK, Johri, BN 2002Physiology of nutrient uptake by arbuscular mycorrhizal fungi.Sharma, AKJohri, BN eds. Arbuscular Mycorrhizae. Interactions in Plants, Rhizosphere and Soils.Science PublishersEnfield, NH279308Google Scholar
  101. 101.
    Sigler, WV, Crivii, S, Zeyer, J 2002Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics.Microb Ecol44306316CrossRefPubMedGoogle Scholar
  102. 102.
    Simon, L, Lalonde, M, Bruns, TD 1992Specific amplification of 18S fungal ribosomal genes from vesicular–arbuscular endomycorrhizal fungi colonizing roots.Appl Environ Microbiol58291295PubMedGoogle Scholar
  103. 103.
    Smit, E, Leeflang, P, Glandorf, B, vanElsas, JD, Wernars, K 1999Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient electrophoresis.Appl Environ Microbiol6526142621PubMedGoogle Scholar
  104. 104.
    Smith, JL, Paul, EA 1990The significance of soil microbial biomass estimations.Bollag, JMStotzky, G eds. Soil Biochemistry, 6th ed.Marcel DekkerNew York357396Google Scholar
  105. 105.
    Söderström, BE 1977Vital staining of fungi in pure cultures and in soil with fluorescein diacetate.Soil Biol Biochem95963CrossRefGoogle Scholar
  106. 106.
    Söderström, BE 1979Some problems in assessing the fluorescein diacetate-active fungal biomass in the soil.Soil Biol Biochem11147148CrossRefGoogle Scholar
  107. 107.
    Staley, JT, Reysenbach, A-L 2001Biodiversity of Microbial Life.Wiley-Liss, IncNew YorkGoogle Scholar
  108. 108.
    Suberkropp, K, Arsuffi, TL, Anderson, JPE 1974Comparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter.Appl Environ Microbiol46237244Google Scholar
  109. 109.
    Suberkropp, K, Klug, MJ 1974Decomposition of deciduous leaf litter in a woodland stream. I. A scanning electron microscopic study.Microb Ecol196103Google Scholar
  110. 110.
    Sylvia, DM 1992Quantification of external hyphae of vesicular-arbuscular mycorrhizal fungi.Methods Microbiol245365Google Scholar
  111. 111.
    Taylor, MJ, Ponika, JU, Sherris, DA, Kern, EB, Gaffey, TA, Kephart, G, Kita, H 2002Detection of fungal organisms in eocinophilic mucin using a fluorescein-labeled chitin-specific binding protein.Otolaryn-Head Neck Surg127377383CrossRefGoogle Scholar
  112. 112.
    Thorne, G 1997The fungi in soil.vanElsas, JDTrevors, JTWellington, EMH eds. Modern Soil Microbiology.Marcel DekkerNew York63127Google Scholar
  113. 113.
    Tommerup, IC 1992Methods for the study of the population biology of vesicular-arbuscular mycorrhizal fungi.Methods Microbiol242351Google Scholar
  114. 114.
    Treseder, KK, Allen, MF 2000Black boxes and missing sinks: fungi in global change research.Mycol Res10412821283CrossRefGoogle Scholar
  115. 115.
    Turner, SM, Newman, EI 1984Fungal abundance on Lolium perenne roots: influence of nitrogen and phosphorous.Trans Brit Mycol Soc82315322Google Scholar
  116. 116.
    Visser, S, Griffiths, CL, Parkinson, D 1983Effects of surface mining on the microbiology of a prairie site in Alberta, Canada.Can J Soil Sci63177189Google Scholar
  117. 117.
    Vosatka, M 2001A future role for the use of arbuscular mycorrhizal fungi in soil remediation: a chance for small-medium enterprises?Minerva Biotechnologica136972Google Scholar
  118. 118.
    Waksman, SA 1916Do fungi live and produce mycelium in the soil?Science NS44320322Google Scholar
  119. 119.
    Waksman, SA 1922The growth of fungi in the soil.Soil Sci14153157Google Scholar
  120. 120.
    Warcup, JH 1955On the origin of colonies of fungi developing on soil dilution plates.Trans Brit Mycol Soc38298301Google Scholar
  121. 121.
    Warcup, JH 1957Studies on the occurrence and activity of fungi in a wheat-field soil.Trans Brit Mycol Soc40237262Google Scholar
  122. 122.
    Warcup, JH 1967Fungi in soil.Burges, ARaw, F eds. Soil Biology.Academic PressNew York51110Google Scholar
  123. 123.
    West, AW, Grant, WD, Sparling, GP 1987Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations.Soil Biol Biochem19607612CrossRefGoogle Scholar
  124. 124.
    White, DC, Davis, DC, Nickels, JS, King, JC, Bobbie, RJ 1979Determination of the sedimentary microbial biomass by extractable lipid phosphate.Oecologia405162Google Scholar
  125. 125.
    Winogradsky, S 1949Microbiologie du Sol.Masson et CieParis428440Google Scholar
  126. 126.
    Worrall, J 1999Brief introduction to fungi.Worrall, JJ eds. Structure and Dynamics of Fungal Populations.Kluwer AcademicBoston118Google Scholar
  127. 127.
    Wright, S, Morton, JB 1989Detection of vesicular–arbuscular mycorrhizal fungus colonization of roots by using a dot-immunoblot assay.Appl Environ Microbiol55761763Google Scholar
  128. 128.
    Zak, JC, Rabatin, SC 1997Organization and description of fungal communities.Wicklow, DTSöderström, BE eds. The Mycota IV.Springer-VerlagNew York3346Google Scholar
  129. 129.
    Zak, JC, Visser, S 1996An appraisal of soil fungal biodiversity: the crossroads between taxonomic and functional biodiversity.Biodiversity Cons5169183Google Scholar
  130. 130.
    Zeppa, S, Vallorani, L, Potenza, L, Bernardini, F, Pieretti, B, Guescini, M, Giomaro, G, Stocchi, V 2000Estimation of fungal biomass and transcript levels in Tilia platyphyllos–Tuber borchii ectomycorrhizae.FEMS Microbiol Ecol188119124CrossRefGoogle Scholar
  131. 131.
    Zhang, Q, Zak, JC 1998Potential physiological activities of fungi and bacteria in relation to plant litter decomposition along a gap size gradient in a natural subtropical forest.Microb Ecol35172179CrossRefPubMedGoogle Scholar
  132. 132.
    Zhou, ZH, Miwa, M, Matsuda, Y, Hogetsu, T 2001Spatial distribution of the subterranean mycelia and ectomycorrhizae of Suillus grevillei genets.J Plant Res114179185Google Scholar
  133. 133.
    Zhou, G, Whong, WZ, Ong, T, Chen, B 2000Development of a fungus-specific PCR assay for detecting low-level fungi in an indoor environment.Mol Cell Probes14339348CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Microbiology, Immunology, Pathology and Department of Forest, Rangeland and Watershed StewardshipColorado State University, Fort Collins, CO 80523-1682USA

Personalised recommendations