Microbial Ecology

, Volume 49, Issue 1, pp 151–162 | Cite as

Molecular Analysis of Bacterial Community Based on 16S rDNA and Functional Genes in Activated Sludge Enriched with 2,4-Dichlorophenoxyacetic Acid (2,4-D) under Different Cultural Conditions

  • T.H. Lee
  • S. Kurata
  • C.H. Nakatsu
  • Y. KamagataEmail author


Differential emergence and diversity of bacterial communities from activated sludge in response to varied cultural conditions using 2,4-dichlorophenoxyacetic acid (2,4-D) were investigated by coupling molecular analyses based on 16S rDNA with functional genes. We employed three different cultural conditions: (1) a culture sequentially fed a high concentration (300 mg/L) of 2,4-D (HS); (2) a culture continuously fed a low concentration (10 mg/L) of 2,4-D (LC); and (3) a serial batch culture in which 1% (v/v) of culture was transferred to a fresh medium containing a high concentration (300 mg/L) of 2,4-D (HB). The HS and LC bioreactors were operated for 3 months and HB was repeatedly transferred for 1 month. The 2,4-D was stably degraded under all the cultural conditions tested. PCR amplification and cloning-based analysis of functional genes using community DNAs from the cultures revealed five different oxygenase genes that may be involved in the initial step of 2,4-D degradation. All five gene-types were present in HS, while one of the five genes, type V (tftA) was not detected in LC. Quantitative PCR analysis showed that in HS, Ralstonia eutropha JMP 134 type-tfdA4 (type I) was the most abundant in copy number (2.0 ± 0.1 × 107 copies/μg DNA) followed by RASC type-tfdA (type II) (1.8 ± 1.0 × 106 copies/μg DNA), putative cadA-like gene (type IV) (2.6 ± 0.8 × 105 copies/μg DNA), cadA gene (type III) (1.3 ± 1.0 × 104 copies/μg DNA), and tftA gene (type V) (3.5 ± 1.1 × 103 copies/μg DNA). Similar results were obtained in LC. In contrast, HB contained only type I and type III genes, and the type I gene was five orders of magnitude greater in copy number than the type III gene. Denaturing gel gradient electrophoresis (DGGE) analysis of PCR, amplified 16S rDNA fragments of bacterial communities in the three different cultures showed low similarity coefficient values (≤0.35) when compared to the original activated sludge, suggesting that 2,4-D amendment caused a drastic change in the bacterial community. Particularly, HB showed only six bands (16–18 bands in the other cultures) and very low similarity coefficient values when compared to the other communities (0.10 to HS, 0.17 to LC, and 0.0 to original sludge). These results indicated that serial batch culturing (HB) resulted in a phylogenetically limited number of 2,4-D degrading bacteria carrying limited catabolic genes whereas more diverse 2,4-D degraders and catabolic genes were present in HS and LC. Therefore, the approach used for monitoring should be taken into account when one evaluates the population dynamics of contaminant-degrading bacteria at bioremediation sites.


Sludge Bacterial Community Activate Sludge Catabolic Gene Community Fingerprint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Japanese Society for the Promotion of Science supported this research.


  1. 1.
    Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ 1990Basic local alignment search tool.J Mol Biol215403410CrossRefPubMedGoogle Scholar
  2. 2.
    Bhat, MA, Tsuda, M, Horiike, K, Nozaki, M, Vaidyanathan, CS, Nakazawa, T 1994Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90.Appl Environ Microbiol60307312PubMedGoogle Scholar
  3. 3.
    Chaudry, GR, Huang, GH 1988Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes from the degradation of 2,4-dichlorophenoxyacetate.J Bacteriol17038973902PubMedGoogle Scholar
  4. 4.
    Crockett, AO, Wittwer, CT 2001Fluorescein-labeled oligonucleotides for real-time PCR: using the inherent quenching of deoxyguanosine nucleotides.Anal Biochem2908997CrossRefPubMedGoogle Scholar
  5. 5.
    Danganan, CE, Ye, RW, Daubaras, DL, Xun, L, Chakarabarty, AM 1994Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100.Appl Environ Microbiol6041004106PubMedGoogle Scholar
  6. 6.
    Danganan, CE, Shankar, S, Ye, RW, Chakrabarty, AM 1995Substrate diversity and expression of the 2,4,5-trichlorophenoxyacetic acid oxygenase from Burkholderia cepacia AC1100.Appl Environ Microbiol6145004504PubMedGoogle Scholar
  7. 7.
    Dice, LR 1945Measures of the amount of ecologic association between species.Ecology26297302Google Scholar
  8. 8.
    Don, RH, Pemberton, JM 1981Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus.J Bacteriol145681686PubMedGoogle Scholar
  9. 9.
    Don, RH, Pemberton, JM 1985Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4.J Bacteriol161466468PubMedGoogle Scholar
  10. 10.
    Don, RH, Weightman, AJ, Knackmuss, HJ, Timmis, KN 1985Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4).J Bacteriol1618590PubMedGoogle Scholar
  11. 11.
    Don, RH, Cox, PT, Wainwright, BJ, Barker, K, Mattick, JS 1991“touchdown” PCR to circumvent spurious priming during gene amplification.Nucleic Acids Res194008PubMedGoogle Scholar
  12. 12.
    Evance, WC, Smith, BSW, Fernley, HN, Davies, JI 1971Bacterial metabolism of 2,4-dichlorophenoxyacetate.Biochem J122543551PubMedGoogle Scholar
  13. 13.
    Fukumori, F, Hausinger, RP 1993Alcaligenes eutrophus IMP 134 “2,4-dichlorophenoxyacetic acid monooxygenase” is an α-ketoglutarate-dependant dioxygenase.J Bacteriol17520832086PubMedGoogle Scholar
  14. 14.
    Fulthorpe, RR, McGowan, C, Maltseva, OV, Holben, WE, Tiedje, JM 19952,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes.Appl Environ Microbiol6132743281PubMedGoogle Scholar
  15. 15.
    Haugland, RA, Schlemn, DJ, Lyons III, RP, Sferra, PR, Chakrabarty, AM 1990Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures.Appl Environ Microbiol5613571362PubMedGoogle Scholar
  16. 16.
    Hogan, DA, Buckley, DH, Nakatsu, CH, Schmidt, TM, Hausinger, RP 1997Distribution of the tfdA gene in soil bacteria that do not degrade 2,4-dichlorophenoxyacetic acid (2,4-D).Microb Ecol349096CrossRefPubMedGoogle Scholar
  17. 17.
    Holbon, WE, Schroeter, BM, Matheson, VG, Olsen, RH, Kukor, JK, Biederbeck, VO, Smith, AE, Tiedje, JM 1992Gene probe analysis of soil microbial populations selected by amendment with 2,4-dechlorophenoxyacetic acid.Appl Environ Microbiol5839413948PubMedGoogle Scholar
  18. 18.
    Itoh, K, Kanda, R, Sumita, Y, Kim, H, Kamagata, Y, Suyama, K, Yamamoto, H, Hausinger, RP, Tiedje, JM 2002tfdA-like genes in 2,4-D degrading bacteria that belong to BradyrhizobiumAgromonasNitrobacterAfipia cluster in α-Proteobacteria.Appl Environ Microbiol6834493454CrossRefPubMedGoogle Scholar
  19. 19.
    Ka, JO, Holben, WE, Tiedje, JM 1994Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soil.Appl Environ Microbiol6011061115PubMedGoogle Scholar
  20. 20.
    Ka, JO, Holben, WE, Tiedje, JM 1994Use of gene probe to aid in recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil.Appl Environ Microbiol6011161120PubMedGoogle Scholar
  21. 21.
    Kamagata, Y, Fulthorpe, RR, Tamura, K, Takami, H, Forney, LJ, Tiedje, JM 1997Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxy acid-degrading bacteria.Appl Environ Microbiol6322662272PubMedGoogle Scholar
  22. 22.
    Kitagawa, W, Takami, S, Miyauchi, K, Masai, E, Kamagata, Y, Tiedje, JM, Fukuda, M 2002Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment.J Bacteriol184509518CrossRefPubMedGoogle Scholar
  23. 23.
    Kurata, S, Kanagawa, T, Yamada, K, Torimura, M, Kamagata, Y, Yokomaku, T, Kurane, K 2001Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY FL-labeled probe or primer.Nucleic Acids Res29e34CrossRefPubMedGoogle Scholar
  24. 24.
    Maltseva, OV, McGowan, C, Fulthorpe, R, Oriel, PJ 1996Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria.Microbiology14211151122PubMedGoogle Scholar
  25. 25.
    McGowan, C, Fulthorpe, R, Wright, A, Tiedje, JM 1998Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders.Appl Environ Microbiol6440894092PubMedGoogle Scholar
  26. 26.
    Muyzer, G, Ellen, C, Waal, DE, Uitterlinden, AG 1993Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction–amplified genes coding for 16S rRNA.Appl Environ Microbiol59695700PubMedGoogle Scholar
  27. 27.
    Nakatsu, CH, Korona, R, Lenski, RE, De Bruijn, FJ, Marsh, TL, Forney, L 1998Parallel and divergent genotypic evolution in experimental population of Ralstonia sp.J Bacteriol18043254331PubMedGoogle Scholar
  28. 28.
    Rogoff, MH, Reid, JJ 1956Bacterial decomposition of 2,4-dichlorophenoxyacetic acid.J Bacteriol71303307PubMedGoogle Scholar
  29. 29.
    Silton, GL, Fan, LT, Erickson, LE, Lee, SM 1986Biodegradation of 2,4-D and related xenobiotic compounds.Enzyme Microb Technol8395403CrossRefGoogle Scholar
  30. 30.
    Suwa, Y, Wright, AD, Fukumori, F, Nummy, KA, Hausinger, RP, Hollben, WE, Forney, LJ 1996Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/α-ketoglutarate dioxygenase from Burkholderia sp. strain RASC.Appl Environ Microbiol6224642469PubMedGoogle Scholar
  31. 31.
    Thompson, JD, Higgins, DG, Gibson, TJ 1996Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice.Nucleic Acids Res2246734680Google Scholar
  32. 32.
    Tiedje, JM, Alexander, M 1969Enzymatic cleavage of the ether bond of 2,4-dichlorophnoxyacetate.J Agric Food Chem1710801084CrossRefGoogle Scholar
  33. 33.
    Vallaeys, TR, Futhorpe, R, Wright, AM, Soulas, G 1996The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis.FEMS Microbiol Ecol20163172CrossRefGoogle Scholar
  34. 34.
    Weisbrug, WG, Barns, SM, Pelletier, DA, Lane, DJ 199116S Ribosomal DNA amplification for phylogenetic study.J Bacteriol173697703PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • T.H. Lee
    • 1
  • S. Kurata
    • 1
    • 2
  • C.H. Nakatsu
    • 3
  • Y. Kamagata
    • 1
    Email author
  1. 1.Research Institute of Biological ResourcesNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Kankyo Engineering CorporationKimitsuJapan
  3. 3.Department of AgronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations