Advertisement

Microbial Ecology

, Volume 47, Issue 1, pp 80–86 | Cite as

Impact of Clay Minerals on Sulfate-Reducing Activity in Aquifers

  • D. Wong
  • J. M. Suflita
  • J. P. McKinley
  • L. R. Krumholz
Article

Abstract

Previous studies have shown that sulfate-reduction activity occurs in a heterogeneous manner throughout the terrestrial subsurface. Low-activity regions are often observed in the presence of clay minerals. Here we report that clays inhibit sulfate reduction activity in sediments and in a pure culture of Desulfovibrio vulgaris. Clay minerals including bentonite and kaolinite inhibited sulfate reduction by 70–90% in sediments. Intact clays and clay colloids or soluble components, capable of passing through a 0.2-µm filter, were also inhibitory to sulfate-reducing bacteria. Other adsorbent materials, including anion or cation exchangers and a zeolite, did not inhibit sulfate reduction in sediments, suggesting that the effect of clays was not due to their cation-exchange capacity. We observed a strong correlation between the Al2O3 content of clays and their relative ability to inhibit sulfate reduction in sediments (r 2 = 0.82). This suggested that inhibition might be a direct effect of Al3+ (aq) on the bacteria. We then tested pure aluminum oxide (Al2O3) and showed it to act in a similar manner to clay. As dissolved aluminum is known to be toxic to a variety of organisms at low concentrations, our results suggest that the effects of clay on sulfate-reducing bacteria may be directly due to aluminum. Thus, our experiments provide an explanation for the lack of sulfate-reduction activity in clay-rich regions and presents a mechanism for the effect.

Keywords

Clay Zeolite Clay Mineral Kaolinite Sulfate Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by the Natural and Accelerated Bioremediation Research Program (NABIR) of the Office of Biological and Environmental Research of the U.S. Department of Energy’s Office of Science. We thank Anne Spain for her critical reading of the manuscript.

References

  1. 1.
    Albrechtsen, H-J 1994Distribution of bacteria, estimated by a viable count method, and heterotrophic activity in different size fractions of aquifer sediment.Geomicrobiol J12253264Google Scholar
  2. 2.
    Albrechtsen, H-J, Winding, A 1992Microbial biomass and activity in subsurface sediments from Vejen, Denmark.Microb Ecol23303317Google Scholar
  3. 3.
    Amonette, JE, Russell, CK, Carosino, KA, Robinson, NL, Ho, JT 2003Toxicity of Al to Desulfovibrio desulfuricans.Appl Environ Microbiol..Google Scholar
  4. 4.
    Beeman, RE, Suflita, JM 1987Microbial ecology of a shallow unconfined ground water aquifer polluted by municipal landfill leachate.Microb Ecol143954Google Scholar
  5. 5.
    Boivin-Jahns, V, Ruimy, R, Bianchi, A, Daumas, S, Christen, R 1996Bacterial diversity in a deep-subsurface clay environment.Appl Environ Microbiol6234053412PubMedGoogle Scholar
  6. 6.
    Cama, J, Ganor, J, Lasaga, AC 1994The kinetics of smectite dissolution.Mineral Mag58A140141Google Scholar
  7. 7.
    Chapelle, FH, Lovley, DR 1990Rates of microbial metabolism in deep coastal plain aquifers.Appl Environ Microbiol5618651874Google Scholar
  8. 8.
    Chapelle, FH, McMahon, PB 1991Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 production.J Hydrol12785108CrossRefGoogle Scholar
  9. 9.
    Costanzo, PA, Guggenheim, S 2001Clays and Clay Minerals: Clay Minerals Society Source Clays.Clay Minerals Society, Aurora, CO.371452Google Scholar
  10. 10.
    Elias, DA, Wong, D, Krumholz, LR, Suflita, JM 2003Characterization of microbial activities and uranium reduction in a shallow aquifer contaminated by an UMTRA disposal cell.Microb Ecol468391PubMedGoogle Scholar
  11. 11.
    Flis, SE, Glenn, AR, Dilworth, MJ 1993The interaction between aluminum and root nodule bacteria.Soil Biol Biochem25403417CrossRefGoogle Scholar
  12. 12.
    Fredrickson, JK, McKinley, JP, Bjornstad, BN, Long, P, Ringelberg, DB, White, DC, Krumholz, LR, Suflita, JM, Colwell, FS, Lehman, RM, Phelps, TJ 1997Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale-sandstone sequence, Northwestern New Mexico.Geomicrobiol J14183202Google Scholar
  13. 13.
    Guida, L, Saidi, Z, Hughes, MN, Poole, RK 1991Aluminum toxicity and binding to Escherichia coli.Arch Microbiol56507512Google Scholar
  14. 14.
    Guzzo, A, Diorio, C, Dubow, MS 1991Transcription of Escherichia coli fliC gene is regulated by metal ions.Appl Environ Microbiol5722552259PubMedGoogle Scholar
  15. 15.
    Guzzo, J, Guzzo, A, DuBow, MS 1992Characterization of the effects of aluminum on luciferase biosensors for the detection of ecotoxicity.Toxicol Lett64/65687693CrossRefGoogle Scholar
  16. 16.
    Hard, BC, Walther, C, Babel, W 1999Sorption of aluminum by sulfate-reducing bacteria isolated from uranium mine tailings.Geomicrobiol J16267275CrossRefGoogle Scholar
  17. 17.
    Illmer, P, Schinner, F 1999Influence of nutrient solution on Al-tolerance of Pseudomonas sp.FEMS Microbiol Lett170187190CrossRefGoogle Scholar
  18. 18.
    Johnson, AC, Wood, M 1990DNA as a possible site of action of aluminum in Rhizobium spp.Appl Environ Microbiol5636293633Google Scholar
  19. 19.
    Jones, RE, Beeman, RE, Suflita, JM 1989Anaerobic metabolic processes in the deep terrestrial subsurface.Geomicrobiol J7117130Google Scholar
  20. 20.
    Kapoor, K, Arora, L 1998Aluminum induced toxicity and growth responses of Cyanobacteria.Pollut Res172531Google Scholar
  21. 21.
    Kostka, JE, Stucki, JW, Nealson, KH, Wu, J 1996Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1.Clays Clay Miner44522529Google Scholar
  22. 22.
    Krumholz, LR, McKinley, JP, Ulrich, GA, Suflita, JM 1997Confined subsurface microbial communities in Cretaceous rock.Nature3866466Google Scholar
  23. 23.
    Laanbroek, HJ, Geerligs, HJ 1983Influence of clay particles (illite) on substrate utilization by sulfate-reducing bacteria.Arch Microbiol134161163Google Scholar
  24. 24.
    Mason, B, Berry, LG 1968Elements of Mineralogy.WH FreemanSan FranciscoGoogle Scholar
  25. 25.
    May, HM, Kinniburgh, DG, Helmke, PA, Jackson, ML 1986Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites.Geochim Cosmochim Acta5016671677CrossRefGoogle Scholar
  26. 26.
    McMahon, PB, Chapelle, FH 1991Role of microbial processes in linking sandstone diagenesis with organic rich clays.J Sed Petrol62110Google Scholar
  27. 27.
    McMahon, PB, Chapelle, FH 1991Microbial organic acid production in aquitard sediments and its role in aquifer geochemistry.Nature349233235CrossRefGoogle Scholar
  28. 28.
    Motamedi, M, Karland, O, Pedersen, K 1996Survival of sulfate reducing bacteria at different water activities in compacted bentonite.FEMS Microbiol Lett1418387CrossRefGoogle Scholar
  29. 29.
    Oelkers, EH, Schott, J, Devidal, JL 1994The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions.Geochim Cosmochim Acta5820112024CrossRefGoogle Scholar
  30. 30.
    Pedersen, K, Motamedi, M, Karnland, O, Sandén, T 2000Mixing and sulphate-reducing activity of bacteria in swelling compacted bentonite clay under high-level radioactive waste repository conditions.J Appl Microbiol8910381047CrossRefPubMedGoogle Scholar
  31. 31.
    Pedersen, K, Motamedi, M, Karnland, O, Sandén, T 2000Cultivability of microorganisms introduced into a compacted bentonite clay buffer under high-level radioactive waste repository conditions.Eng Geol58149161CrossRefGoogle Scholar
  32. 32.
    Pina, RG, Cervantes, C 1996Microbial interactions with aluminum.Biometals9311316PubMedGoogle Scholar
  33. 33.
    Ragnarsdottir, KV 1993Dissolution kinetics of heulandite at pH 2–12 and 25°C.Geochim Cosmochim Acta.24392449CrossRefGoogle Scholar
  34. 34.
    Rapp, BJ, Wall, JD 1987Genetic transfer in Desulfovibrio desulfuricans.Proc Natl Acad Sci USA8491289130Google Scholar
  35. 35.
    Rubini, P, Lakatos, A, Champmartin, D, Kiss, T 2002Speciation and structural aspects of interactions of Al(III) with small biomolecules.Coord Chem Rev228137152CrossRefGoogle Scholar
  36. 36.
    Scharf, R, Mamet, R, Zimmels, Y, Kimchie, S, Schoenfeld, N 1994Evidence for the interference of aluminum with bacterial porphyrin biosynthesis.Biometals7135141PubMedGoogle Scholar
  37. 37.
    Sinclair, JL, Ghiorse, WC 1989Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments.Geomicrobiol J71531Google Scholar
  38. 38.
    Stozky, G 1966Influence of clay minerals on microorganisms. III. Effect of particle size, cation exchange capacity, and surface area on bacteria.Can J Microbiol1212351246PubMedGoogle Scholar
  39. 39.
    Stumm, W, Morgan, JJ 1981Aquatic Chemistry.Wiley InterscienceNew YorkGoogle Scholar
  40. 40.
    Ulrich, GA, Krumholz, LR, Suflita, JM 1997A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides.Appl Environ Microbiol6316271630Google Scholar
  41. 41.
    Ulrich, GA, Martino, D, Burger, K, Routh, J, Grossman, EL, Ammerman, JW, Suflita, JM 1998Sulfur cycling in the terrestrial subsurface: commensal interactions, spatial scales, and microbial heterogeneity.Microb Ecol36141151CrossRefPubMedGoogle Scholar
  42. 42.
    Weaver, TL, Dugan, PR 1972Enhancement of bacterial methane oxidation by clay minerals.Nature237518PubMedGoogle Scholar
  43. 43.
    Wilkin, RT 1998Solubility and stability of zeolites in aqueous solution: I. Analcime, Na- and K-clinoptilolite.Am Mineral83746761Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • D. Wong
    • 1
  • J. M. Suflita
    • 1
  • J. P. McKinley
    • 2
  • L. R. Krumholz
    • 1
  1. 1.Department of Botany and MicrobiologyInstitute for Energy and the Environment, University of Oklahoma, Norman, OK 73019USA
  2. 2.Pacific Northwest National Laboratory, Richland, WA 99352USA

Personalised recommendations