Microbial Ecology

, Volume 48, Issue 1, pp 29–40 | Cite as

Characterization of Humus Microbial Communities in Adjacent Forest Types That Differ in Nitrogen Availability

  • S. E. Leckie
  • C. E. Prescott
  • S. J. Grayston
  • J. D. Neufeld
  • W. W. Mohn


To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.


Bacterial Community Microbial Biomass Forest Type Forest Floor Fungal Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank C. Staley and S. Adair for field assistance, D. Adams (Nucleic Acid and Protein Services Unit, UBC), and B. Ord (Macaulay Land Use Research Institute, UK) for assisting with the RISA and PLFA analyses, respectively, and S. Harper and P. Parkinson (Environmental Engineering Lab, UBC) for the soluble organic carbon analyses. Western Forest Products, Ltd., provided field assistance and accommodations. The project was funded by Forest Renewal British Columbia and Forestry Innovation Investment grants to C.E.P., Scottish Executive Environment and Rural Affairs Department grants to S.J.G., and Natural Sciences and Engineering Research Council and Edward W. Bassett Memorial scholarships to S.E.L.


  1. 1.
    Aldén, L, Demoling, F, Bååth, E 2001Rapid method of determining factors limiting bacterial growth in soil.Appl Environ Microbiol6718301838CrossRefPubMedGoogle Scholar
  2. 2.
    Bååth, E, Pennanen, T, Fritze, H 1995Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clearcut or burned coniferous forest soils.Soil Biol Biochem27229240CrossRefGoogle Scholar
  3. 3.
    Bailey, VL, Peacock, AD, Smith, JL, Bolten, H,Jr. 2002Relationships between soil microbial biomass determined by chloroform fumigation–extraction, substrate-induced respiration, and phospholipid fatty acid analysis.Soil Biol Biochem3413851389CrossRefGoogle Scholar
  4. 4.
    Bauhaus, J, Khanna, PK 1999The significance of microbial biomass in forest soils.Rastin, NBauhaus, J eds. Going Underground—Ecological Studies in Forest SoilsResearch SignpostTrivandrum77110Google Scholar
  5. 5.
    Bennett, JN, Andrew, B, Prescott, CE 2002Vertical fine root distributions of western redcedar, western hemlock, and salal in old-growth cedar–hemlock forests on northern Vancouver Island.Can J For Res3212081216CrossRefGoogle Scholar
  6. 6.
    Berg, MP, Kniese, JP, Verhoef, HA 1998Dynamics and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil.Biol Fertil Soils26313322CrossRefGoogle Scholar
  7. 7.
    Blair, JM, Parmelee, RW, Beare, MH 1990Decay rates, nitrogen fluxes, and decomposer communities of single- and mixed-species foliar litter.Ecology7119761985Google Scholar
  8. 8.
    Bligh, EG, Dyer, WJ 1959A rapid method of total lipid extraction and purification.Can J Biochem Physiol37911917Google Scholar
  9. 9.
    Borneman, J, Triplett, EW 1997Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associate with deforestation.Appl Environ Microbiol6326472653PubMedGoogle Scholar
  10. 10.
    Brosius, J, Dull, TJ, Sleeter, DD, Noller, HF 1981Gene organization and primary structure of a ribosomal operon from Escerichia coli. J Mol Biol148107127PubMedGoogle Scholar
  11. 11.
    Bundt, M, Widmer, F, Pesaro, M, Zeyer, J, Blaser, P 2001Preferential flow-paths: biological “hot spots” in soils.Soil Biol Biochem33729738CrossRefGoogle Scholar
  12. 12.
    Chang, SX, Preston, CM, Weetman, GF 1995Soil microbial biomass and microbial and mineralizable N in a clear-cut chronosequence on northern Vancouver Island, British Columbia.Can J For Res2515951607Google Scholar
  13. 13.
    Coûteaux, M-M, Bottner, P, Berg, B 1995Litter decomposition, climate, and litter quality.Trends Ecol Evol106366CrossRefGoogle Scholar
  14. 14.
    Duineveld, BM, Kowalchuk, GA, Keijzer, A, van Elsas, JD, van Veen, JH 2001Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA.Appl Environ Microbiol67172178CrossRefPubMedGoogle Scholar
  15. 15.
    Ekblad, A, Nordgren, A 2002Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability.Plant Soil242115122CrossRefGoogle Scholar
  16. 16.
    Ekelund, F, Rønn, R, Christensen, S 2001Distribution with depth of protozoa, bacteria, and fungi in soil profiles from three Danish forest sites.Soil Biol Biochem33475481CrossRefGoogle Scholar
  17. 17.
    Expert Committee on Soil Survey (Canada) (1987) The Canadian system of soil classification. Canada Dept. of Agriculture, Research Branch, OttawaGoogle Scholar
  18. 18.
    Federle, TW 1986Microbial distribution in soil—new techniques.Megusar, FGantar, M eds. Perspectives in Microbial EcologySlovene Society for MicrobiologyLjubljana493498Google Scholar
  19. 19.
    Felske, A, Akkermans, ADL 1998Spatial homogeneity of abundant bacterial 16S rRNA molecules in grassland soils.Microb Ecol363136CrossRefPubMedGoogle Scholar
  20. 20.
    Fisher, MM, Triplett, EW 1999Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities.Appl Environ Microbiol6546304636PubMedGoogle Scholar
  21. 21.
    Fritze, H, Pietikainen, J, Pennanen, T 2000Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest.Eur J Soil Sci51565573CrossRefGoogle Scholar
  22. 22.
    Frostegård, Å, Bååth, E 1996The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil.Biol Fertil Soils225965CrossRefGoogle Scholar
  23. 23.
    Frostegård, Å, Bååth, E, Tunlid, A 1993Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis.Soil Biol Biochem25723730CrossRefGoogle Scholar
  24. 24.
    Frostegård, Å, Tunlid, A, Bååth, E 1991Microbial biomass measured as total lipid phosphate in soils of different organic content.J Microbiol Methods14151163CrossRefGoogle Scholar
  25. 25.
    Gardes, M, Bruns, TD 1993ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts.Mol Ecol2113118PubMedGoogle Scholar
  26. 26.
    Gelsomino, A, Keijzer-Wolters, A, Cacco, G, van Elsas, JD 1999Assessment of bacterial community structure in soil by polyrnerase chain reaction and denaturing gradient gel electrophoresis.J Microbiol Methods38115CrossRefPubMedGoogle Scholar
  27. 27.
    Grayston, SJ, Campbell, CD 1996Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis).Tree Physiol1610311038PubMedGoogle Scholar
  28. 28.
    Grayston, SJ, Prescott, CE Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol BiochemGoogle Scholar
  29. 29.
    Green, RN, Klinka, K 1994A Field Guide to Site Identification and interpretation for the Vancouver Forest RegionCrown Publications Inc.Victoria, BC, CanadaGoogle Scholar
  30. 30.
    Griffiths, BS, Ritz, K, Ebblewhite, N, Dobson, G 1999Soil microbial community structure: effects of substrate loading rates.Soil Biol Biochem31145153CrossRefGoogle Scholar
  31. 31.
    Hart, SC, Stark, JM 1997Nitrogen limitation of the microbial biomass in an old-growth forest soil.Ecoscience49198Google Scholar
  32. 32.
    Hobbie, SE, Vitousek, PM 2000Nutrient limitation of decomposition in Hawaiian forests.Ecology8118671877Google Scholar
  33. 33.
    Kaye, JP, Hart, SC 1997Competition for nitrogen between plants and soil microorganisms.Trends Ecol Evol12139143CrossRefGoogle Scholar
  34. 34.
    Keenan, RJ, Prescott, CE, Kimmins, JP 1993Mass and nutrient content of woody debris and forest floor in western red cedar and western hemlock forests on northern Vancouver Island.Can J For Res2310521059Google Scholar
  35. 35.
    Kjøller, A, Struwe, S 1982Microfungi in ecosystems: fungal occurrence and activity in litter and soil.Oikos39391422Google Scholar
  36. 36.
    Krave, AS, Lin, B, Braster, M, Laverman, AM, van Straalen, NM, Röling, WFM, van Verseveld, HW 2002Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in central Java, Indonesia.Environ Microbiol4361373CrossRefPubMedGoogle Scholar
  37. 37.
    Lechevalier, H, Lechevalier, MP 1988Chemotaxonomic use of lipids—an overview.Ratledge, CWilkinson, SG eds. Microbial LipidsAcademic PressLondon869902Google Scholar
  38. 38.
    Lechevalier, MP 1997Lipids in bacterial taxonomy—a taxonomists view.Crit Rev Microbiol5109210Google Scholar
  39. 39.
    Marchesi, JR, Sato, T, Weightman, AJ, Martin, TA, Fry, JC, Hiom, SJ, Wade, WG 1998Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA.Appl Environ Microbiol64795799PubMedGoogle Scholar
  40. 40.
    Muyzer, G, de Waal, ES, Uitterlinden, AG 1993Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.Appl Environ Microbiol59695700PubMedGoogle Scholar
  41. 41.
    Muyzer, G, Teske, A, Wirsen, CO, Jannasch, HW 1995Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments.Arch Microbiol164165172CrossRefPubMedGoogle Scholar
  42. 42.
    Myers, RT, Zak, DR, White, DC, Peacock, A 2001Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems.Soil Sci Soc Am J65359367Google Scholar
  43. 43.
    Nakatsu, CH, Torsvik, V, Øvreås, L 2000Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products.Soil Sci Soc Am J6413821388Google Scholar
  44. 44.
    Nunan, N, Wu, K, Young, IM, Crawford, JW, Ritz, K 2002 In situ spatial patterns of soil bacterial populations, mapped at multiple spatial scales, in an arable soil.Microb Ecol44296305CrossRefPubMedGoogle Scholar
  45. 45.
    O’Leary, WM, Wilkinson, SG 1988Gram-positive bacteria.Ratledge, CWilkinson, SG eds. Microbial LipidsAcademic PressLondon117202Google Scholar
  46. 46.
    Øvreås, L, Jensen, S, Daae, FL, Torsvik, V 1998Microbial community changes in a perturbed agricultural soil investigated by molecular and physiological approaches.Appl Environ Microbiol6427392742PubMedGoogle Scholar
  47. 47.
    Pennanen, T, Liski, J, Bååth, E, Kitunin, V, Uotila, J, Westman, CJ, Fritze, H 1999Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development.Microb Ecol38168179CrossRefPubMedGoogle Scholar
  48. 48.
    Prescott, CE 1995Does nitrogen availability control rates of litter decomposition in forests?Plant Soil168–1698388Google Scholar
  49. 49.
    Prescott, CE 2002The influence of the forest canopy on nutrient cycling.Tree Physiol2211931200PubMedGoogle Scholar
  50. 50.
    Prescott, CE, McDonald, MA, Weetman, GF 1993Availability of N and P in the forest floors of adjacent stands of western red cedar-western hemlock and western hemlock–amabilis fir on northern Vancouver Island.Can J For Res23605610Google Scholar
  51. 51.
    Prescott, CE, Vesterdal, L, Pratt, J, Venner, KH, de Montigny, M, Trofymow, JA 2000Nutrient concentration and nitrogen mineralization in forest floors of single species conifer plantations in coastal British Columbia.Can J For Res3013411352CrossRefGoogle Scholar
  52. 52.
    Priha, O, Grayston, SJ, Hiukka, R, Pennanen, T, Smolander, A 2001Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies, and Betula pendula at two forest sites.Biol Fertil Soils331724CrossRefGoogle Scholar
  53. 53.
    Ranjard, L, Poly, F, Lata, J-C, Mougel, C, Thioulouse, J, Nazaret, S 2001Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability.Appl Environ Microbiol6744794487CrossRefPubMedGoogle Scholar
  54. 54.
    Rønn, R, McCaig, AE, Griffiths, BS, Prosser, JI 2002Impact of protozoan grazing on bacterial community structure in soil microcosms.Appl Environ Microbiol6860946105CrossRefGoogle Scholar
  55. 55.
    Saetre, P, Bååth, E 2000Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand.Soil Biol Biochem32909917CrossRefGoogle Scholar
  56. 56.
    Siira-Pietikäinen, A, Pietikainen, J, Fritze, H, Haimi, J 2001Short-term response of soil decomposer communities to forest management: clear felling versus alternative forest harvesting methods.Can J For Res318899CrossRefGoogle Scholar
  57. 57.
    Smit, E, Leeflang, P, Gommans, S, van den Broek, J, van Mil, S, Wernars, K 2001Diversity and seasonal fluctuations of the dominant members of the bacterial community in a wheat field as determined by cultivation and molecular methods.Appl Environ Microbiol6722842291CrossRefPubMedGoogle Scholar
  58. 58.
    Staddon, WJ, Duchesne, LC, Trevors, JT 1996Conservation of forest soil microbial diversity: the impact of fire and research needs.Environ Rev4267275Google Scholar
  59. 59.
    Swift, MJ, Heal, OW, Anderson, JM 1979Decomposition in Terrestrial EcosystemsBlackwell Scientific PublicationsOxfordGoogle Scholar
  60. 60.
    Tate, KR, Ross, DJ, Feltham, CW 1988A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures.Soil Biol Biochem20329335CrossRefGoogle Scholar
  61. 61.
    Turner, DP, Franz, EH 1985The influence of western hemlock and western redcedar on microbial numbers, nitrogen mineralization, and nitrification.Plant Soil88259267Google Scholar
  62. 62.
    Vance, ED, Brookes, PC, Jenkinson, DS 1987An extraction method for measuring soil microbial biomass C.Soil Biol Biochem19703707CrossRefGoogle Scholar
  63. 63.
    White, DC, Davis, WM, Nickels, JS, King, JD, Bobbie, RJ 1979Determination of the sedimentary microbial biomass by extractable lipid phosphate.Oecologia405162Google Scholar
  64. 64.
    White, TJ, Bruns, T, Lee, S, Taylor, J 1990Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.Innis, MAGelfand, DHSninsky, JJWhite, TJ eds. PCR Protocols: A Guide to Methods and ApplicationsAcademic PressNew York315322Google Scholar
  65. 65.
    Wilkinson, SG 1988Gram-negative bacteria.Ratledge, CWilkinson, SG eds. Microbial LipidsAcademic PressLondon299488Google Scholar
  66. 66.
    Zelles, L 1997Phospholipid fatty acid profiles in selected members of soil microbial communities.Chemosphere35275294CrossRefPubMedGoogle Scholar
  67. 67.
    Zelles, L, Bai, QY, Beck, T, Beese, F 1992Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils.Soil Biol Biochem24317323CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S. E. Leckie
    • 1
  • C. E. Prescott
    • 1
  • S. J. Grayston
    • 2
    • 4
  • J. D. Neufeld
    • 3
  • W. W. Mohn
    • 3
  1. 1.Department of Forest SciencesUniversity of British Columbia, 2424 Main MallVancouver, BCCanada
  2. 2.Macaulay Land Use Research InstituteAberdeenUK
  3. 3.Department of Microbiology and ImmunologyUniversity of British Columbia, #300-6174 University BoulevardVancouver, BCCanada
  4. 4.Department of Forest SciencesUniversity of British ColumbiaVancouver, BCCanada

Personalised recommendations