Microbial Ecology

, Volume 47, Issue 2, pp 150–158 | Cite as

Microbial Monitoring of Spacecraft and Associated Environments

  • M. T. La Duc
  • R. Kern
  • K. Venkateswaran


Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained.


International Space Station Microbial Detection Facility Surface Witness Plate Spacecraft Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Funding was provided by the Mars Program Office, and Advanced Environmental Monitoring and Control. Technical assistance by D. Pierson, R. Sumner, W. Nicholson, S. Chung, G. Kazarians, F. Chen, M. Kempf, G. Kuhlman, and T. Ma is appreciated. We are thankful to D. Jan, K. Buxbaum and T. Luchik for support and encouragement.


  1. 1.
    Anonymous (1980) NASA standard procedures for the microbiological examination of space hardware, NHB 5340.1B, 1980, Jet Propulsion Laboratory communication, National Aeronautics and Space AdministrationGoogle Scholar
  2. 2.
    Eaton, ADClesceri, LSGreenberg, AE eds. 1995Standard Methods for the Examination of Water and Wastewater, 19th ed.APHAWashington, DCGoogle Scholar
  3. 3.
    Favero, MS 1971Microbiological assay of space hardware.Environ Biol Med12736PubMedGoogle Scholar
  4. 4.
    Foster, TL, Winans Jr, L 1975Psychrophilic microorganisms from areas associated with the Viking spacecraft.Appl Microbiol4546550Google Scholar
  5. 5.
    Giovannoni, SJ, Britschgi, TB, Moyer, CL, Field, KG 1990Genetic diversity in Sargasso Sea bacterioplankton.Nature3456063PubMedGoogle Scholar
  6. 6.
    Griffiths, MW 1996The role of ATP bioluminescence in the food industry: new light on old problems.Food Technol506272Google Scholar
  7. 7.
    Grimes, DJ, Mills, AL, Nealson, KH 2000The importance of viable but nonculturable bacteria in biogeochemistry.Colwell, RRGrimes, DJ eds. Nonculturable Microorganisms in the Environment.ASM PressWashington, DC209227Google Scholar
  8. 8.
    Guarnieri, V, Gaia, E, Battocchio, L, Pitzurra, M, Savino, A, Pasquarella, C, Vago, T, Cotronei, V 1997New methods for microbial contamination monitoring: an experiment on board the MIR orbital station.Acta Astronaut40195201CrossRefPubMedGoogle Scholar
  9. 9.
    Johnson, JL 1981Genetic characterization.Gerhardt, PMurray, RGECostilaw, RNNester, EWWood, WAKrieg, NRPhillips, GB eds. Manual of Methods for general bacteriology.ASM PressWashington, DC450472Google Scholar
  10. 10.
    Karl, D 1980Cellular nucleotide measurements and applications in microbial ecology.Microbiol Rev44739796PubMedGoogle Scholar
  11. 11.
    Kieft, TL 2000Size matters: dwarf cells in soil and subsurface terrestrial environments.Colwell, RRGrimes, DJ eds. Nonculturable Microorganisms in the Environment.ASM PressWashington, DC1946Google Scholar
  12. 12.
    Koenig, DW, Pierson, DL 1997Microbiology of the Space Shuttle water system.Wat Sci Technol355964CrossRefGoogle Scholar
  13. 13.
    La Duc, MT, Nicholson, WL, Kern, R, Venkateswaran, K 2003Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility.Environ Microbiol (accepted)..Google Scholar
  14. 14.
    La Duc, MT, Satomi, M, Venkateswaran, K 2003 Bacillus odysseyi sp. nov. isolated from the Mars Odyssey spacecraft.Intern J Syst Evol Microbiol (accepted)..Google Scholar
  15. 15.
    La Duc, MT, Sumner, R, Pierson, D, Venkateswaran, K (2003) Characterization and monitoring of microbes in the International Space Station drinking water. Proceeding of the International Conference on Environmental Systems. 03ICES-188. July 6 to 11th 2003, Vancouver, CanadaGoogle Scholar
  16. 16.
    Makimura, K, Hanazawa, R, Takatori, K, Tamura, Y, Fujisaki, R, Nishiyama, Y, Abe, S, Uchida, K, Kawamura, Y, Ezaki, T, Yamaguchi, H 2001Fungal flora on board the Mir-Space Station, identification by morphological features and ribosomal DNA sequences.Microbiol Immunol45357363(2003) submittedPubMedGoogle Scholar
  17. 17.
    Moter, A, Gobel, UB 2000Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms.J Microbiol Methods4185112(2003) submittedCrossRefPubMedGoogle Scholar
  18. 18.
    Pace, NR, Stahl, DA, Lane, DJ, Olsen, GJ 1985The analysis of natural microbial communities by ribosomal RNA sequences.Microb Ecol9156(2003) submittedGoogle Scholar
  19. 19.
    Pierson, DL 2001Microbial contamination of spacecraft.Gravit Space Biol Bull1416(2003) submittedPubMedGoogle Scholar
  20. 20.
    Puleo, JR, Fields, ND, Moore, B, Graves, RC 1970Microbial contamination associated with the Apollo 6 spacecraft during final assembly and testing.Space Life Sci14856(2003) submittedGoogle Scholar
  21. 21.
    Puleo, JR, Oxborrow, GS, Fields, ND, Hall, HE 1970Quantitative and qualitative microbiological profiles of the Apollo 10 and 11 spacecraft.Appl Microbiol3384389(2003) submittedGoogle Scholar
  22. 22.
    Puleo, JR, Oxborrow, GS, Fields, ND, Herring, CM, Smith, LS 1973Microbiological profiles of four Apollo spacecraft.Appl Microbiol26838845(2003) submittedPubMedGoogle Scholar
  23. 23.
    Puleo, JR, Favero, MS, Oxborrow, GS, Herring, CM 1975Method for collecting naturally occurring airborne bacterial spores for determining their thermal resistance.Appl Microbiol30786790(2003) submittedPubMedGoogle Scholar
  24. 24.
    Puleo, JR, Fields, ND, Bergstrom, SL, Oxborrow, GS, Stabekis, PD, Koukol, R 1977Microbiological profiles of the Viking spacecraft.Appl Environ Microbiol33379384(2003) submittedPubMedGoogle Scholar
  25. 25.
    Roszak, DB, Colwell, RR 1987Survival strategies of the bacteria in the natural environment.Microbiol Rev51365379(2003) submittedPubMedGoogle Scholar
  26. 26.
    Stackebrandt, E, Embley, TM 2000Diversity of uncultured microorganisms in the environment.Colwell, RRGrimes, DJ eds. Nonculturable Microorganisms in the Environment.ASM PressWashington DC1946(2003) submittedGoogle Scholar
  27. 27.
    Swofford D (1990) PAUP: phylogenetic analysis using parsimony, version 3.0. Computer program distributed by the Illinois Natural History Survey, Champaign, ILGoogle Scholar
  28. 28.
    Thorne, PS, Bartlett, KH, Phipps, J, Kulhankova, K 2003Evaluation of five extraction protocols for quantification of endotoxin in metalworking fluid aerosol.Ann Occup Hyg473136(2003) submittedCrossRefPubMedGoogle Scholar
  29. 29.
    Vasin, VB, Trofimov, VI 1995The experimental study of microbial contamination of the space hardware.Adv Space Res3273276(2003) submittedCrossRefGoogle Scholar
  30. 30.
    Venkateswaran, K, Satomi, M, Chung, S, Kern, R, Koukol, R, Basic, C, White, DC 2001Molecular microbial diversity of a spacecraft assembly facility.Syst Appl Microbiol24311320(2003) submittedPubMedGoogle Scholar
  31. 31.
    Venkateswaran, K, Hattori, N, La Duc, MT, Kern, R 2003ATP as a biomarker of viable microorganisms in clean-room facilities.J Microbiol Methods52367377CrossRefPubMedGoogle Scholar
  32. 32.
    Venkateswaran, K, Kempf, M, Chen, F, Satomi, M, Nicholson, W, Kern, R 2003 Bacillus nealsonii sp. nov., isolated from a spacecraft assembly facility, whose spores are gamma-radiation resistant.Int J Syst Evol Microbiol..Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Biotechnology and Planetary Protection GroupJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109USA

Personalised recommendations