Microbial Ecology

, Volume 47, Issue 4, pp 374–384 | Cite as

Genera-Specific Immunofluorescence Labeling of Ammonia Oxidizers with Polyclonal Antibodies Recognizing Both Subunits of the Ammonia Monooxygenase

  • C. FienckeEmail author
  • E. Bock


Polyclonal antibodies that recognize the two subunits AmoA and AmoB of the ammonia monooxygenase (AMO) were applied to identify ammonia-oxidizing bacteria by immunofluorescence (IF) labeling in pure, mixed, and enriched cultures. The antibodies against the AmoA were produced using a synthetic peptide of the AmoA of Nitrosomonas eutropha, whereas the antibodies against the AmoB had been developed previously is against the whole B-subunit of the AMO [Pinck et al. (2001) Appl Environ Microbiol 67:118–124]. Using IF labeling, the AmoA antibodies were specific for the detection of all species of the genus Nitrosomonas. In contrast, the antiserum against AmoB labeled all genera of ammonia oxidizers of the β-subclass of Proteobacteria (Nitrosomonas, Nitrosospira, Nitrosolobus, and Nitrosovibrio). The fluorescence signals of the AmoA antibodies were spread all over the cells, whereas the signals of the AmoB antibodies were associated with the cytoplasmic membranes. The specificity of the reactions of the antisera with ammonia oxidizers were proven in pure and mixed cultures, and the characteristic IF labeling and the morphology of the cells enabled their identification at the genus level. The genus-specific IF labeling could be used to identify ammonia oxidizers enriched from various habitats. In enrichment cultures of natural sandstone, cells of the genera Nitrosomonas, Nitrosovibrio, and Nitrosospira were detected. Members of the genus Nitrosovibrio and Nitrosolobus were most prominent in enriched garden soil samples, whereas members of the genus Nitrosomonas dominated in enriched activated sludge. The antibodies caused only slight background fluorescence on sandstone and soil particles compared to oligonucleotide probes, which could not be used to detect ammonia oxidizers on these materials because of strong nonspecific fluorescence.


Proteobacteria Enrichment Culture Ammonia Oxidizer Nitrite Oxidizer Activate Sludge Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank H.-P. Koops for contributing pure cultures of ammonia oxidizers, S. Bartosch for technical assistance and comments on the manuscript, and E. Spieck for scientific discussions.


  1. 1.
    Aamand, J, Ahl, T, Spieck, E 1996Monoclonal antibodies recognizing nitrite oxidoreductase of Nitrobacter hamburgensis, N. winogradskyi, and N. vulgaris. Appl Env Microbiol6223522355Google Scholar
  2. 2.
    Alzerreca, JJ, Norton, JM, Klotz, MG 1999The amo operon in marine, ammonia-oxidizing γ-proteobacteria.FEMS Microbiol Lett1802129CrossRefPubMedGoogle Scholar
  3. 3.
    Arciero, DM, Hooper, AB 1993Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit.J Biol Chem2681464514654PubMedGoogle Scholar
  4. 4.
    Bartosch, S, Wolgast, I, Spieck, E, Bock, E 1999Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase.Appl Environ Microbiol6541264133PubMedGoogle Scholar
  5. 5.
    Bartosch, S, Hartwig, C, Spieck, E, Bock, E 2002Immunological detection of Nitrospira-like bacteria in various soils.Microbiol Ecol432633CrossRefGoogle Scholar
  6. 6.
    Belser, LW, Schmidt, EL 1978Serological diversity within a terrestrial ammonia-oxidizing population.Appl Environ Microbiol36589593Google Scholar
  7. 7.
    Belser, LW 1979Population ecology of nitrifying bacteria.Ann Rev Microbiol16309333CrossRefGoogle Scholar
  8. 8.
    Bergmann, DJ, Hopper, AB 1994Sequence of the gene, amo B, for the 43 kDa polypeptide of ammonia monooxygenase of Nitrosomonas europaea. Biochim Biophys Res Commun204759762CrossRefGoogle Scholar
  9. 9.
    Bock, E, Koops, H-P, Möller, UC, Rudert, M 1990A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov.Arch Microbiol153105110Google Scholar
  10. 10.
    Bothe, H, Jost, G, Schloter, M, Ward, BB, Witzel, K-P 2000Molecular analysis of ammonia oxidation and denitrification in natural environments.FEMS Microbiol Rev24673690CrossRefPubMedGoogle Scholar
  11. 11.
    Coyne, MS, Arunakumari, A, Averill, BA, Tiedje, JM 1989Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria.Appl Environ Microbiol5529242931PubMedGoogle Scholar
  12. 12.
    Daims, H, Brühl, A, Amann, R, Schleifer, K-H, Wagner, M 1999The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set.Syst Appl Microbiol22434444PubMedGoogle Scholar
  13. 13.
    Ehrich, S, Behrens, D, Lebedeva, E, Ludwig, W, Bock, E 1995A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship.Arch Microbiol1641623CrossRefPubMedGoogle Scholar
  14. 14.
    Ensign, SA, Hyman, MR, Arp, DJ 1993In vitro activation of ammonia monooxygenase from Nitrosomonas by copper.J Bacteriol17519711998PubMedGoogle Scholar
  15. 15.
    Green, PN, Bousfield, IJ, Hood, D 1988Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmani sp. nov., M. fuyisawanease sp. nov.Int J Syst Bacteriol38124127Google Scholar
  16. 16.
    Hahn, D, Amann, R, Ludwig, W, Akkermans, AD, Schleifer, K-H 1992Detection of micro-organisms in soil after in situ hybridisation with rRNA-targeted, fluorescently labelled oligonucleotides.J Gen Microbiol138879887PubMedGoogle Scholar
  17. 17.
    Hahn, D, Amann, R, Zeyer, J 1993Detection of mRNA in Streptomyces cells by whole-cell hybridization with digoxigenin-labeled probes.Appl Environ Microbiol5927532757Google Scholar
  18. 18.
    Harms, H, Koops, H-P, Wehrmann, H 1976An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov. gen. nov. sp.Arch Microbiol108105111PubMedGoogle Scholar
  19. 19.
    Hastings, RC, Ceccherini, MT, Miclaus, N, Saunders, JR, Bazzicalupo, M, McCarthy, AJ 1997Direct molecular biological analysis of ammonia oxidising bacteria populations in cultivated soil plots treated with swine manure.FEMS Microbiol Ecol234554CrossRefGoogle Scholar
  20. 20.
    Head, IM, Hiorns, WD, Embley, TM, McCarthy, AJ, Saunders, JR 1993The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences.J Gen Microbiol13911471153PubMedGoogle Scholar
  21. 21.
    Hiorns, WD, Hastings, RC, Head, IM, McCarthy, AJ, Saunders, JR, Pickup, RW, Hall, GH 1995Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of Nitrosospira in the environment.Microbiology14127932800PubMedGoogle Scholar
  22. 22.
    Hollocher, TC, Tate, ME, Nicholas, DJD 1981Oxidation of ammonia by Nitrosomonas europaea. Definitive 18O-tracer evidence that hydroxylamine formation involves a monooxygenase.J Biol Chem2561083410836PubMedGoogle Scholar
  23. 23.
    Hyman, MR, Wood, PM 1985Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene.Biochem J227719725PubMedGoogle Scholar
  24. 24.
    Hyman, MR, Arp, DJ 1992 14C2H2-and 14CO2-labelling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase.J Biol Chem26715341545PubMedGoogle Scholar
  25. 25.
    Jiang, QQ, Bakken, LR 1999Comparison of Nitrosospira strains isolated from terrestrial environments.FEMS Microbiol Ecol30171186CrossRefPubMedGoogle Scholar
  26. 26.
    Körner, H, Frunzke, K, Döhler, K, Zumft, WG 1987Immunochemical patterns of distribution of nitrous oxide reductase and nitrite reductase (cytochrome cd 1) among denitrifying pseudomonas.Arch Microbiol1482024PubMedGoogle Scholar
  27. 27.
    Konuma, S, Satoh, H, Mino, T, Matsu, T 2001Comparison of enumeration methods of ammonia-oxidizing bacteria.Wat Sci Technol43107114Google Scholar
  28. 28.
    Koops, H-P, Böttcher, B, Möller, UC, Pommerening-Röser, A, Stehr, G 1991Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov. Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov.J Gen Microbiol13716891699Google Scholar
  29. 29.
    Koops, H-P, Möller, UC 1992The lithotrophic ammonia-oxidizing bacteria.Balows, ATrüper, HGDworkin, MHarder, WSchleifer, KH eds. The Prokaryotes, vol 3.Springer VerlagNew York26252637Google Scholar
  30. 30.
    Koops, H-P, Pommerening-Röser, A 2001Distribution and ecophysiology of nitrifying bacteria emphasizing cultured species.FEMS Microbiol Ecol125519CrossRefGoogle Scholar
  31. 31.
    Matulevich, VA, Strom, PF, Finstein, MS 1975Length of incubation for enumerating nitrifying bacteria present in various environments.Appl Microbiol29265268PubMedGoogle Scholar
  32. 32.
    McDonald, RM 1986Nitrification in soil: an introductory history.Prosser, JI eds. Nitrification.IRL PressOxford116Google Scholar
  33. 33.
    McTavish, H, Fuchs, JA, Hooper, AB 1993Sequence of the gene coding for ammonia-monooxygenase in Nitrosomonas europaea.J Bacteriol17524362444PubMedGoogle Scholar
  34. 34.
    Meincke, M, Krieg, E, Bock, E 1989 Nitrosovibrio spp., the dominant ammonia oxidizing bacteria in building stones.Appl Environ Microbiol5521082110Google Scholar
  35. 35.
    Mobarry, BK, Wagner, M, Urbain, V, Rittmann, BE, Stahl, DA 1996Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria.Appl Environ Microbiol6221562162PubMedGoogle Scholar
  36. 36.
    Noda, N, Ikuta, H, Ebie, Y, Hirata, A, Tsuneda, S, Matsumura, M, Sumino, T, Inamori, Y 2000Rapid quantification and in situ detection of nitrifying bacteria in biofilms by monoclonal antibody method.Wat Sci Technol41301308Google Scholar
  37. 37.
    Norton, J, Alzerreca, JJ, Suwa, Y, Klotz, MG 2002Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria.Arch Microbiol177139149CrossRefPubMedGoogle Scholar
  38. 38.
    Pinck, C, Coeur, C, Potier, P, Bock, E 2001Polyclonal antibodies recognizing the AmoB protein of ammonia oxidizers of the β-subclass of the class Proteobacteria.Appl Environ Microbiol67118124CrossRefPubMedGoogle Scholar
  39. 39.
    Pommerening-Röser, A, Rath, G, Koops, H-P 1996Phylogenetic diversity within the genus Nitrosomonas.Syst Appl Microbiol19344351Google Scholar
  40. 40.
    Purkhold, U, Pommerening-Röser, A, Juretschko, S, Schmid, MC, Koops, H-P, Wagner, M 2000Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys.Appl Environ Microbiol6653685382CrossRefPubMedGoogle Scholar
  41. 41.
    Sanden, B, Grunditz, C, Hansson, Y, Dalhammar, G 1994Quantification and characterisation of Nitrosomonas and Nitrobacter using monoclonal antibodies.Wat Sci Technol2916Google Scholar
  42. 42.
    Smorczewski, WT, Schmidt, EL 1991Numbers, activities, and diversity of autotrophic ammonia-oxidizing bacteria in a freshwater, eutrophic lake sediment.Can J Microbiol37828833Google Scholar
  43. 43.
    Spieck, E, Meincke, M, Bock, E 1992Taxonomic diversity of Nitrosovibrio strains isolated from building sandstones.FEMS Microbiol Ecol1022126CrossRefGoogle Scholar
  44. 44.
    Suzuki, I, Kwok, S-C 1970Cell-free ammonia oxidation by Nitrosomonas europaea extracts: effects of polyamines, Mg2+ and albumin.Biochem Biophys Res Commun39950955PubMedGoogle Scholar
  45. 45.
    Suzuki, I, Kwok, S-C, Dular, U, Tsang, DCY 1981Cell-free ammonia-oxidizing system of Nitrosomonas europaea: general conditions and properties.Can J Biochem59477483PubMedGoogle Scholar
  46. 46.
    Terry, KR, Hooper, AB 1981Hydroxylamine oxidoreductase: a 20-heme, 200 000 molecular weight cytochrome c with unusual denaturation properties which forms a 63 000 molecular weight monomer after heme removal.Biochemistry2070267032PubMedGoogle Scholar
  47. 47.
    Teske, A, Alm, E, Regan, JM, Toze, S, Rittmann, BE, Stahl, DA 1994Evolutionary relationship among ammonia- and nitrite-oxidizing bacteria.J Bacteriol17666236630PubMedGoogle Scholar
  48. 48.
    Völsch, A, Nader, WF, Geiss, HK, Nebe, G, Birr, C 1990Detection and analysis of two serotypes of ammonia-oxidizing bacteria in sewage plants by flow cytometry.Appl Environ Microbiol140153158Google Scholar
  49. 49.
    Walker, N 1978On the diversity of nitrifiers in nature.Schlessinger, D eds. MicrobiologyAm Soc MicrobolWashington, DC346347Google Scholar
  50. 50.
    Wagner, M, Rath, G, Amann, R, Koops, H-P, Schleifer, KH 1995 In situ identification of ammonia-oxidizing bacteria.Syst Appl Microbiol18251264Google Scholar
  51. 51.
    Ward, BB 1982Oceanic distribution of ammonium oxidizing bacteria determined by immunofluorescent assay.J Mar Res4011551172Google Scholar
  52. 52.
    Ward, BB, Carlucci, AF 1985Marine ammonia- and nitrite-oxidizing bacteria: serological diversity determined by immunofluorescence in sewage plants by flow cytometry.Appl Environ Microbiol5624302435Google Scholar
  53. 53.
    Ward, BB, Cockcroft, AR, Kilpatrick, KA 1993Antibody and DNA probes for detection of nitrite reductase in seawater.J Gen Microbiol13922852293PubMedGoogle Scholar
  54. 54.
    Watson, SW, Graham, LB, Remsen, CC, Valois, FW 1971A lobular, ammonia-oxidizing bacterium. Nitrosolobus multiformis nov. gen. nov. sp.Arch Microbiol76183203Google Scholar
  55. 55.
    Watson, SW, Waterbury, JB 1971Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp.Arch Microbiol77203230Google Scholar
  56. 56.
    Whittenbury, R, Phillips, KC, Wilkinson, JF 1970Enrichment, isolation and some properties of methane-utilizing bacteria.J Gen Microbiol61205218PubMedGoogle Scholar
  57. 57.
    Woese, CR, Weisburg, WG, Paster, BJ, Hahn, CM, Tanner, RS, Krieg, NR, Koops, H-P, Harms, H, Stackebrandt, E 1984The phylogeny of purple bacteria: the beta subdivision.Syst Appl Microbiol5327336Google Scholar
  58. 58.
    Woese, CR, Weisburg, WG, Hahn, CM, Paster, BJ, Zablen, LB, Lewis, BJ, Macke, TJ, Ludwig, W, Stackebrandt, E 1985The phylogeny of purple bacteria: the gamma subdivision.Syst Appl Microbiol62533Google Scholar
  59. 59.
    Wood, PM 1986Nitrification as a bacterial energy source.Prosser, JI eds. Nitrification.IRL PressOxford3962Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  1. 1.Institut für Allgemeine BotanikUniversität Hamburg, D 22609 HamburgGermany

Personalised recommendations