Advertisement

Microbial Ecology

, Volume 49, Issue 2, pp 209–217 | Cite as

Methanogen Communities in a Drained Bog: Effect of Ash Fertilization

  • P.E. GalandEmail author
  • H. Juottonen
  • H. Fritze
  • K. Yrjälä
Article

Abstract

Forestry practises such has drainage have been shown to decrease emissions of the greenhouse gas methane (CH4) from peatlands. The aim of the study was to examine the methanogen populations in a drained bog in northern Finland, and to assess the possible effect of ash fertilization on potential methane production and methanogen communities. Peat samples were collected from control and ash fertilized (15,000 kg/ha) plots 5 years after ash application, and potential CH4 production was measured. The methanogen community structure was studied by DNA isolation, PCR amplification of the methyl coenzyme-M reductase (mcr) gene, denaturing gradient gel electrophoresis (DGGE), and restriction fragment length polymorphism (RFLP) analysis. The drained peatland showed low potential methane production and methanogen diversity in both control and ash-fertilized plots. Samples from both upper and deeper layers of peat were dominated by three groups of sequences related to Rice cluster-I hydrogenotroph methanogens. Even though pH was marginally greater in the ash-treated site, the occurrence of those sequences was not affected by ash fertilization. Interestingly, a less common group of sequences, related to the Fen cluster, were found only in the fertilized plots. The study confirmed the depth related change of methanogen populations in peatland.

Keywords

Clone Library Restriction Fragment Length Polymorphism Analysis Restriction Fragment Length Polymorphism Pattern Hydrogenotroph Methanogen Methanogen Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Mikko Moilanen and Jorma Issakainen for taking samples. The work was funded by the Finnish Academy.

References

  1. 1.
    Aarne, M eds. 1998Finnish Statistical Yearbook of ForestryFinnish Forest Research InstituteFinlandGoogle Scholar
  2. 2.
    Aarnio, J, Kaunisto, S, Moilanen, M, Veijalaneinen, H 1997Suometsien lannoitus (Fertilization on drained peatlands)Mielikäinen, KRiikilä, M eds. Kannattava Puuntuotanto (Profitability of Forestry)KustannusosakeyhtiöMetsälehti116126(in Finnish)Google Scholar
  3. 3.
    Altschul, S, Madden, T, Schaffer, A, Zhang, J, Zhang, Z, Miller, W, Lipman, D 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Res2533893402PubMedGoogle Scholar
  4. 4.
    ASM (2000) Environmental Change: Microbial Contributions, Microbial Solutions. American Society for Microbiology. http://www.asmusa.org/pasrc/reports.htmGoogle Scholar
  5. 5.
    Earl, J, Hall, G, Pickup, RW, Ritchie, DA, Edwards, C 2003Analysis of methanogen diversity in a hypereutrophic lake using PCR-RFLP analysis of mcr sequencesMicrob Ecol46270278CrossRefPubMedGoogle Scholar
  6. 6.
    Ellermann, J, Hedderich, R, Bocher, R, Thauer, RK 1988The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg)Eur J Biochem172669677CrossRefPubMedGoogle Scholar
  7. 7.
    Fisher, RA, Corber, AS, Williams, CB 1943The relation between the number of species and the number of individuals in a random sample of an animal populationJ Anim Ecol124258Google Scholar
  8. 8.
    Fritze, H, Perkiomaki, J, Saarela, U, Katainen, R, Tikka, P, Yrjala, K, Karp, M, Haimi, J, Romantschuk, M 2000Effect of Cd-containing wood ash on the microflora of coniferous forest humusFEMS Microbiol Ecol324351CrossRefPubMedGoogle Scholar
  9. 9.
    Galand, PE, Fritze, H, Yrjälä, K 2003Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fenEnviron Microbiol511331143CrossRefPubMedGoogle Scholar
  10. 10.
    Galand, PE, Saarnio, S, Fritze, H, Yrjala, K 2002Depth related diversity of methanogen Archaea in Finnish oligotrophic fenFEMS Microbiol Ecol42441449CrossRefGoogle Scholar
  11. 11.
    Good, IJ 1953The population frequencies of species and the estimation of the population parametersBiometrika40237264Google Scholar
  12. 12.
    Grosskopf, R, Stubner, S, Liesack, W 1998Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosmsAppl Environ Microbiol6449834989PubMedGoogle Scholar
  13. 13.
    Hagerberg, D, Wallander, H 2002The impact of forest residue removal and wood ash amendment on the growth of the ectomycorrhizal external myceliumFEMS Microbiol Ecol39139146CrossRefGoogle Scholar
  14. 14.
    Hales, BA, Edwards, C, Ritchie, DA, Hall, G, Pickup, RW, Saunders, JR 1996Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysisAppl Environ Microbiol62668675PubMedGoogle Scholar
  15. 15.
    Hammer, O, Harper, DAT (2002) Data analysis package. Distributed by the author; available from: http://folk.uio.no/ohammer/past/
  16. 16.
    Higgins, D, Thompson, J, Gibson, T, Thompson, JD, Higgins, DG, Gibson, TJ 1994CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res2246734680PubMedGoogle Scholar
  17. 17.
    Horn, MA, Matthies, C, Kusel, K, Schramm, A, Drake, HL 2003Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peatAppl Environ Microbiol697483CrossRefPubMedGoogle Scholar
  18. 18.
    IPCC 2001Climate Change 2001 (The Scientific Basis)Cambridge University PressCambridge, UKGoogle Scholar
  19. 19.
    Joabsson, A, Christensen, TR 2001Methane emissions from wetlands and their relationship with vascular plants: an Arctic exampleGlobal Change Biol7919932CrossRefGoogle Scholar
  20. 20.
    Kettunen, A, Kaitala, V, Lehtinen, A, Lohila, A, Alm, J, Silvola, J, Martikainen, PJ 1999Methane production and oxidation potentials in relation to water table fluctuations in two boreal miresSoil Biol Biochem3117411749CrossRefGoogle Scholar
  21. 21.
    Komulainen, VM, Nykänen, H, Martikainen, PJ, Laine, J 1998Short-term effect of restoration on vegetation change and methane emissions from peatlands drained for forestry in southern FinlandCan J For Res28402411CrossRefGoogle Scholar
  22. 22.
    Laiho, R, Laine, J 1997Tree stand biomass and carbon content in an age sequence of drained pine mires in southern FinlandFor Ecol Manage93161169Google Scholar
  23. 23.
    Laiho, R, Vasander, H, Penttila, T, Laine, J 2003Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlandsGbobal Biogeochem Cycles17122Google Scholar
  24. 24.
    Laine, J, Vasander, H, (1996) Ecology and vegetation gradients of peatlands. In: Vasander, H (Ed.) Peatlands in Finland. Finnish Peatland Society, pp 10–19Google Scholar
  25. 25.
    Laine, J, Vasander, H, Laiho, R 1995Long-term effects of water level drawdown on the vegetation of drained pine mires in southern FinlandJ Appl Ecol32785802Google Scholar
  26. 26.
    Lansdown, JM, Quay, PD, King, SL 1992CH4 production via CO2 reduction in a temperate bog: a source of 13C-depleted CH4Geochim Cosmochim Acta5634933503CrossRefGoogle Scholar
  27. 27.
    Lappalainen, E 1996Mires of Finland and their usesLappalainen, E eds. Global Peat ResourcesInternational Peat SocietyJyskä6974Google Scholar
  28. 28.
    Lloyd, D, Thomas, KL, Hayes, A, Hill, B, Hales, BA, Edwards, C, Saunders, JR, Ritchie, DA, Upton, M 1998Micro-ecology of peat: minimally invasive analysis using confocal laser scanning microscopy, membrane inlet mass spectrometry and PCR amplification of methanogen-specific gene sequencesFEMS Microbiol Ecol25179188CrossRefGoogle Scholar
  29. 29.
    Lueders, T, Chin, KJ, Conrad, R, Friedrich, M 2001Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineageEnviron Microbiol3194204CrossRefPubMedGoogle Scholar
  30. 30.
    Luton, PE, Wayne, JM, Sharp, RJ, Riley, PW 2002The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfillMicrobiology14835213530PubMedGoogle Scholar
  31. 31.
    Mahmood, S, Finlay, RD, Wallander, H, Erland, S 2002Ectomycorrhizal colonisation of roots and ash granules in a spruce forest treated with granulated wood ashFor Ecol Manage16013Google Scholar
  32. 32.
    Martikainen, PJ, Nykaenen, H, Alm, J, Silvola, J 1995Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophyPlant Soil168571577Google Scholar
  33. 33.
    Moilanen, M, Silfverberg, K, Hokkanen, TJ 2002Effects of wood-ash on the tree growth, vegetation and substrate quality of a drained mire: a case studyForest Ecol Manag171321338CrossRefGoogle Scholar
  34. 34.
    Moyer, C, Dobbs, F, Karl, D 1994Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, HawaiiAppl Environ Microbiol60871879PubMedGoogle Scholar
  35. 35.
    Muyzer, G, Brinkhoff, T, Nubel, U, Santegoeds, C, Schafer, H, Wawer, C 1998Denaturing gradient gel electrophoresis (DGGE) in microbial ecologyAkkermans, ADLElsas, JDBruijn, FJ eds. Molecular Microbial Ecology ManualKluwer AcademicDordrecht127Google Scholar
  36. 36.
    Nercessian, D, Upton, M, Lloyd, D, Edwards, C 1999Phylogenetic analysis of peat bog methanogen populationsFEMS Microbiol Ecol173425429CrossRefGoogle Scholar
  37. 37.
    Niemi, RM, Heiskanen, I, Wallenius, K, Lindstrom, K 2001Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortiaJ Microbiol Methods45155165CrossRefPubMedGoogle Scholar
  38. 38.
    Paavilainen, E, Päivänen, J 1995Peatland Forestry—Ecology and PrinciplesEcological Studies: Analysis and Synthesis, vol 111SpringerBerlin248Google Scholar
  39. 39.
    Saarsalmi, A, Malkonen, E 2001Forest fertilization research in Finland: a literature review ScandJ For Res16514535Google Scholar
  40. 40.
    Shannon, CE, Weaver, W 1963The Mathematical Theory of CommunicationUniversity of Illinois PressUrbana, ILGoogle Scholar
  41. 41.
    Sizova, MV, Panikov, NS, Tourova, TP, Flanagan, PW 2003Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bogFEMS Microbiol Ecol45301315CrossRefGoogle Scholar
  42. 42.
    Strom, L, Ekberg, A, Mastepanov, M, Christensen, TB 2003The effect of vascular plants on carbon turnover and methane emissions from a tundra wetlandGlobal Change Biol911851192CrossRefGoogle Scholar
  43. 43.
    Svensson, BH, Sundh, I 1992Factors affecting methane production in peat soilsSuo43183190Google Scholar
  44. 44.
    Thauer, RK 1998Biochemistry of methanogenesis: a tribute to Marjory StephensonMicrobiology14423772406PubMedGoogle Scholar
  45. 45.
    Upton, M, Hill, B, Edwards, C, Saunders, JR, Ritchie, DA, Lloyd, D 2000Combined molecular ecological and confocal laser scanning microscopic analysis of peat bog methanogen populationsFEMS Microbiol Lett193275281CrossRefPubMedGoogle Scholar
  46. 46.
    Weil, CF, Sherf, BA, Reeve, JN 1989A comparison of the methyl reductase genes and gene productsCan J Microbiol35101108PubMedGoogle Scholar
  47. 47.
    Williams, RT, Crawford, RL 1984Methane production in Minnesota peatlandsAppl Environ Microbiol4712661271Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • P.E. Galand
    • 1
    Email author
  • H. Juottonen
    • 1
  • H. Fritze
    • 2
  • K. Yrjälä
    • 1
  1. 1.Department of Biological and Environmental Sciences, Division of General MicrobiologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Finnish Forest Research InstituteVantaa Research CentreVantaaFinland

Personalised recommendations