Microbial Ecology

, Volume 49, Issue 1, pp 142–150

The Soil Flagellate Heteromita globosa Accelerates Bacterial Degradation of Alkylbenzenes through Grazing and Acetate Excretion in Batch Culture



The impact of grazing by soil flagellates Heteromita globosa on aerobic biodegradation of benzene by Pseudomonas strain PS+ was examined in batch culture. Growth of H. globosa on these bacteria obeyed Monod kinetics (μmax, 0.17 ± 0.03 h−1; Ks, 1.1 ± 0.2 × 107 bacteria mL−1) and was optimal at a bacteria/ flagellate ratio of 2000. Carbon mass balance showed that 5.2% of total [ring-U-14C]benzene fed to bacteria was subsequently incorporated into flagellate biomass. Growth-inhibiting concentrations (IC50) of alkylbenzenes (benzene, toluene, ethylbenzene) were inversely related with their octanol/ water partitioning coefficients, and benzene was least toxic for bacteria and flagellates with IC50 values of 4392 (± 167) μM and 2770 (± 653) μM, respectively. The first-order rate constant for benzene degradation (k1, 0.48 ± 0.12 day−1) was unaffected by the presence or absence of flagellates in cultures. However, the rate of benzene degradation by individual bacteria averaged three times higher in the presence of flagellates (0.73 ± 0.13 fmol cell−1 h−1) than in their absence (0.26 ± 0.03 fmol cell−1 h−1). Benzene degradation also coincided with higher levels of dissolved oxygen and a higher rate of nitrate reduction in the presence of flagellates (p < 0.02). Grazing by flagellates may have increased the availability of dissolved oxygen to a smaller surviving population of bacteria engaged in the aerobic reactions initiating benzene degradation. In addition, flagellates may also have increased the rate of nitrate reduction through the excretion of acetate as an additional electron donor for these bacteria. Indeed, acetate was shown to progressively accumulate in cultures where flagellates grazed on heat-killed bacteria. This study provided evidence that grazing flagellates stimulate bacterial degradation of alkylbenzenes and provide a link for carbon cycling to consumers at higher trophic levels. This may have important implications for bioremediation processes.


  1. 1.
    Biagini, GA, Finlay, BJ, Lloyd, D 1998Protozoan stimulation of anaerobic microbial activity: enhancement of the rate of terminal decomposition of organic matter.FEMS Microbiol Ecol2718CrossRefGoogle Scholar
  2. 2.
    Caron, DA 1994Inorganic nutrients, bacteria, and the microbial loop.Microb Ecol28295298CrossRefGoogle Scholar
  3. 3.
    Dolfing, J, Zeyer, J, Binder-Eicher, P, Schwarzenbach, RP 1990Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen.Arch Microbiol154336341CrossRefPubMedGoogle Scholar
  4. 4.
    Ekelund, F 1996Growth kinetics of five common heterotrophic soil flagellates.Eur J Soil Biol321524Google Scholar
  5. 5.
    Fenchel, T 1982Ecology of heterotrophic microflagellates II. Bioenergetics and growth.Mar Ecol Prog Ser8225231Google Scholar
  6. 6.
    Fenchel, T 1987Ecology of ProtozoaSpringer-VerlagBerlinGoogle Scholar
  7. 7.
    Geider, RJ, Leadbeater, BSC 1988Kinetics and energetics of growth of the marine choanoflagellate Stephanoeca diplocostata.Mar Ecol Prog Ser47169177Google Scholar
  8. 8.
    Heipieper, HJ, Diefenbach, R, Keweloh, H 1992Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity.Appl Environ Microbiol5818471852PubMedGoogle Scholar
  9. 9.
    Holubar, P, Grudke, T, Moser, A, Strenn, B, Braun, R 2000Effects of bacterivorous ciliated protozoans on degradation efficiency of a petrochemical activated sludge process.Wat Res3420512060CrossRefGoogle Scholar
  10. 10.
    Hunt, HW, Cole, CV, Klein, DA, Coleman, DC 1977A simulation model for the effect of predation on bacteria in continuous culture.Microb Ecol3259278Google Scholar
  11. 11.
    Inoue, A, Horikoshi, K 1989A Pseudomonas thrives in high concentrations of toluene.Nature338264266Google Scholar
  12. 12.
    Isken, S, de Bont, JAM 1998Bacteria tolerant to organic solvents.Extremophiles2229238PubMedGoogle Scholar
  13. 13.
    Kinner, NE, Harvey, RW, Shay, DM, Metge, DW, Warren, A 2002Field evidence for a protistan role in an organically-contaminated aquifer.Environ Sci Technol3643124318PubMedGoogle Scholar
  14. 14.
    Körner, H, Zumft, WG 1989Expression of denitrification enzymes in response to the dissolved oxygen and respiratory substrate in continuous culture of Pseudomonas stutzeri.Appl Environ Microbiol5516701676PubMedGoogle Scholar
  15. 15.
    Kota, S, Borden, RC, Barlaz, MA 1999Influence of protozoan grazing on contaminant biodegradation.FEMS Microbiol Ecol29179189Google Scholar
  16. 16.
    Madsen, EL, Sinclair, JL, Ghiorse, WC 1991In situ biodegradation: microbiological patterns in a contaminated aquifer.Science252830833PubMedGoogle Scholar
  17. 17.
    Mattison, RG, Harayama, S 2001The predatory soil flagellate Heteromita globosa stimulates toluene biodegradation by a Pseudomonas sp.FEMS Microbiol Lett1943945PubMedGoogle Scholar
  18. 18.
    Mattison, RG, Taki, H, Harayama, S 2002The bacterivorous soil flagellate Heteromita globosa reduces bacterial clogging under denitrifying conditions in sand-filled aquifer columns.Appl Environ Microbiol6845394545PubMedGoogle Scholar
  19. 19.
    Newell, CJ, Rifai, HS, Wilson, JT, Connor, JA, Aziz, JA, Suarez, MP (2002) Calculation and use of first-order rate constants for monitored natural attenuation studies. EPA/540/S-02/500, http://www.epa.gov/ada/publications.html
  20. 20.
    Novarino, G, Warren, A, Butler, H, Lambourne, G, Boxshall, A, Bateman, J, Kinner, NE, Harvey, RW, Mosse, RA, Teltsch, B 1997Protistan communities in aquifers: a review.FEMS Microbiol Rev20261275PubMedGoogle Scholar
  21. 21.
    Page, FC 1988A New Key to Freshwater and Soil GymnamoebaeFreshwater Biological AssociationAmbleside, Cumbria (UK)Google Scholar
  22. 22.
    Pinkart, HC, Wolfram, JW, Rogers, R, White, DC 1996Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene.Appl Environ Microbiol6211291132Google Scholar
  23. 23.
    Ramos, JL, Duque, E, Rodríguez-Herva, JJ, Godoy, P, Haïdour, A, Reyes, F, Fernández-Barrero, A 1997Mechanisms for solvent tolerance in bacteria.J Biol Chem27238873890PubMedGoogle Scholar
  24. 24.
    Ratsak, CH, Maarsen, KA, Kooijman, SALM 1996Effects of protozoa on carbon mineralization in activated sludge.Wat Res30112Google Scholar
  25. 25.
    Rogerson, A, Berger, J 1983Enhancement of the microbial degradation of crude petroleum by the ciliate Colpidium colpoda.J Gen Appl Microbiol294150Google Scholar
  26. 26.
    Rogerson, A, Shiu, WY, Huang, GL, Mackay, D, Berger, J 1983Determination and interpretation of hydrocarbon toxicity to ciliate protozoa.Aquat Toxicol3215228Google Scholar
  27. 27.
    Roslev, P, Madsen, PL, Thyme, JB, Henriksen, K 1998Degradation of phthalate and di-(2-ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil.Appl Environ Microbiol6447114719PubMedGoogle Scholar
  28. 28.
    Sanders, RW, Caron, DA, Berninger, UG 1992Relationship between bacteria and heterotrophic nanoplankton in marine and freshwaters: an inter-ecosystem comparison.Mar Ecol Prog Ser86114Google Scholar
  29. 29.
    Sherr, BF, Sherr, EB, Berman, T 1982Decomposition of organic detritus: a selective role for microflagellate protozoa.Limnol Oceanogr27765769Google Scholar
  30. 30.
    Sherr, BF, Sherr, EB, McDaniel, J 1992Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages.Appl Environ Microbiol5823812385Google Scholar
  31. 31.
    Sinclair, JL, Kampbell, DH, Cook, ML, Wilson, JT 1993Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel.Appl Environ Microbiol59467472Google Scholar
  32. 32.
    Sokal, RR, Rohlf, FJ 1981Biometry: The Principles and Practice of Statistics in Biological ResearchWH FreemanSan FranciscoGoogle Scholar
  33. 33.
    van Hellemond, JJ, Opperdoes, FR, Tielens, AGG 1998Trypanosomatidae produce acetate via mitochondrial acetate:succinate CoA transferase.Proc Natl Acad Sci USA9530363041PubMedGoogle Scholar
  34. 34.
    van Rijn, J, Tal, Y, Barak, Y 1996Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor.Appl Environ Microbiol6226152620Google Scholar
  35. 35.
    Zarda, B, Mattison, G, Hess, A, Hahn, D, Hohener, P, Zeyer, J 1998Analysis of bacterial and protozoan communities in an aquifer contaminated with monoaromatic hydrocarbons.FEMS Microbiol Ecol27141152Google Scholar
  36. 36.
    Zubkov, MV, Sleigh, MA 1999Growth of amoebae and flagellates on bacteria deposited on filters.Microb Ecol37107115PubMedGoogle Scholar
  37. 37.
    Zwart, KB, Darbyshire, JF 1992Growth and nitrogenous excretion of a common soil flagellate Spumella sp.—a laboratory experiment.J Soil Sci43145157Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Marine Biotechnology Institute Co., Ltd.Kamaishi CityJapan
  2. 2.Technology Center, Building Engineering Research InstituteTaisei CorporationTotsuka-kuJapan
  3. 3.Department of BiotechnologyNational Institute of Technology and EvaluationKisarazu-shiJapan

Personalised recommendations