Advertisement

Microbial Ecology

, Volume 49, Issue 1, pp 73–82 | Cite as

Establishment of Two Ectomycorrhizal Shrub Species in a Semiarid Site after in Situ Amendment with Sugar Beet, Rock Phosphate, and Aspergillus niger

  • F. Caravaca
  • M.M. Alguacil
  • R. Azcón
  • J. Parladé
  • P. Torres
  • A. Roldán
Article

Abstract

A field experiment was carried out to assess the effectiveness of the addition of sugar beet, rock phosphate, and Aspergillus niger directly into the planting hole, and the mycorrhizal inoculation of seedlings with Scleroderma verrucosum, for promotion of plant growth of Cistus albidus L. and Quercus coccifera L. and enhancement of soil physicochemical, biochemical, and biological properties, in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus content in the amended soils of both species was about fourfold higher than in the nonamended soil. Amendment addition increased the aggregate stability of the rhizosphere of C. albidus (by 56% with respect to control soil) while the mycorrhizal inoculation increased only the aggregate stability of the rhizosphere of Q. coccifera (by 13% with respect to control soil). Biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA, acid phosphatase, and β-glucosidase) of the rhizosphere of C. albidus were increased by amendment addition but not by mycorrhizal inoculation. Both treatments increased enzyme activities of the rhizosphere of Q. coccifera. The mycorrhizal inoculation of the seedlings with S. verrucosum was the most effective treatment for stimulating the growth of C. albidus (by 469% with respect to control plants) and Q. coccifera (by 74% with respect to control plants). The combined treatment, involving mycorrhizal inoculation of seedlings and addition of the amendment directly into soil, had no additive effect on the growth of either shrub species.

Keywords

Sugar Beet Rhizosphere Soil Rock Phosphate Shrub Species Mycorrhizal Colonization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This research was supported by the EC + CICYT co-financed FEDER programme (REN 2000-1724-CO3-01).

References

  1. 1.
    Amaranthus, MP, Perry, D 1989Rapid root tip and mycorrhiza formation and increased survival of Douglas-fir seedlings after soil transfer.New Forests37782CrossRefGoogle Scholar
  2. 2.
    Andrade, G, Mihara, KL, Linderman, RG, Bethlenfalvay, GJ 1998Soil aggregation status and rhizobacteria in the mycorrhizosphere.Plant Soil2028996CrossRefGoogle Scholar
  3. 3.
    Augé, R 2001Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis.Mycorrhiza11342CrossRefGoogle Scholar
  4. 4.
    Borken, W, Muhs, A, Beese, F 2002Changes in microbial and soil properties following compost treatment of degraded temperate forest soils.Soil Biol Biochem34403412CrossRefGoogle Scholar
  5. 5.
    Brink, RH, Dubar, P, Lynch, DL 1960Measurement of carbohydrates in soil hydrolysates with anthrone.Soil Sci89157166Google Scholar
  6. 6.
    Caravaca, F, García, C, Hernández, MT, Roldán, A 2002Aggregate stability changes after organic amendment addition and mycorrhizal inoculation in the afforestation of a semi-arid site with Pinus halepensis.Appl Soil Ecol19199208CrossRefGoogle Scholar
  7. 7.
    Caravaca, F, Masciandaro, G, Ceccanti, B 2002Land use in relation to soil chemical and biochemical properties in semi-arid Mediterranean environment.Soil Till Res682330CrossRefGoogle Scholar
  8. 8.
    Dickie, IA, Koide, RT, Fayish, AC 2001Vesicular–arbuscular mycorrhizal infection of Quercus rubra seedlings.New Phytol151257264CrossRefGoogle Scholar
  9. 9.
    García, C, Hernández, MT, Roldán, A, Albaladejo, J, Castillo, V 2000Organic amendment and mycorrhizal inoculation as a practice in afforestation of soils with Pinus halepensis Miller: effect on their microbial activity.Soil Biol Biochem3211731181CrossRefGoogle Scholar
  10. 10.
    García, C, Hernández, MT, Costa, F 1997Potential use of dehydrogenase activity as an index of microbial activity in degraded soils.Commun Soil Sci Plant Anal28123134Google Scholar
  11. 11.
    Grand, LF, Harvey, AE (1982) “Quantitative measurements of ectomycorrhizae on plant roots.” In: Schenk, NC (Ed.), Methods and Principles of Mycorrhizal Research, American Phytopathological Society, St Paul, MN, pp 157–164Google Scholar
  12. 12.
    Haussling, M, Marschner, H 1989Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce [Picea abies (L.) Karst.] trees.Biol Fertil Soils8128133Google Scholar
  13. 13.
    Haynes, RJ, Swift, RS 1990Stability of soil aggregates in relation to organic constituents and soil water content.J Soil Sci417383Google Scholar
  14. 14.
    Jastrow, JD, Miller, RM, Lussenhop, J 1998Contributions of interacting biological mechanisms to soil aggregates stabilization in restored prairie.Soil Biol Biochem30905916CrossRefGoogle Scholar
  15. 15.
    Jeffries, P, Gianinazzi, S, Perotto, S, Turnau, K, Barea, JM 2003The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility.Biol Fertil Soils37116Google Scholar
  16. 16.
    Jongmans, AG, van Breemen, N, Lundström, U, van Hees, PAW, Finlay, RD, Srinivasan, M, Unestam, T, Giesler, R, Melkerud, PA, Olsson, M 1997Rock-eating fungi.Nature389682683CrossRefGoogle Scholar
  17. 17.
    Lax, A, Díaz, E, Castillo, V, Albaladejo, J 1994Reclamation of physical and chemical properties of a salinized soil by organic amendment.Arid Soil Res Rehab8917Google Scholar
  18. 18.
    Lax, A, García-Orenes, F 1993Carbohydrates from municipal solid wastes as aggregation factor of soil.Soil Technol6157162CrossRefGoogle Scholar
  19. 19.
    Lax, A, Roldán, A, Caravaca, F, García-Orenes, F (1997) “Relationships between aggregate improvement, microbiological activity and organo-mineral complex formation in soils from semiarid areas.” In: Pandalai, SG (Ed.), Recent Research Developments in Soil Biology and Biochemistry, Trivandrum India, pp 77–92Google Scholar
  20. 20.
    Maestre, FT, Bautista, S, Cortina, J, Díaz, G, Honrubia, M, Vallejo, R 2002Microsite and mycorrhizal inoculum effects on the establishment of Quercus coccifera in a semi-arid degraded steppe.Ecol Eng19289295CrossRefGoogle Scholar
  21. 21.
    Maremammani, A, Bedini, S, Matosevic, I, Tomei, PE, Giovannetti, M 2003Type of mycorrhizal associations in two coastal nature reserves of Mediterranean basin.Mycorrhiza133340PubMedGoogle Scholar
  22. 22.
    Masciandaro, G, Ceccanti, B, García, C 1994Anaerobic digestion of straw and piggery wastewater: II. Optimization of the process. Agrochimica3195203Google Scholar
  23. 23.
    Murphy, J, Riley, JP 1962A modified single solution method for determination of phosphate in natural waters.Anal Chim Acta273136Google Scholar
  24. 24.
    Muthukumar, T, Udaiyan, K 2000Influence of organic manures on arbuscular mycorrhizal fungi associated with Vigna unguiculata (L.) Walp. in relation to tissue nutrients and soluble carbohydrate in roots under field conditions.Biol Fertil Soils31114120CrossRefGoogle Scholar
  25. 25.
    Nannipieri, P, Ceccanti, B, Cervelli, S, Matarese, E 1980Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil.Soil Sci Soc Am J4410111016Google Scholar
  26. 26.
    Naseby, DC, Lynch, JM 1997Rhizosphere soil enzymes as indicators of perturbation caused by a genetically modified strain of Pseudomonas fluorescens on wheat seed.Soil Biol Biochem2913531362CrossRefGoogle Scholar
  27. 27.
    Page, AL, Miller, RH, Keeney, DR 1982Methods of Soil Analysis, Part IIAmerican Society of AgronomyMadison WIGoogle Scholar
  28. 28.
    Pearson, JN, Abbot, LK, Jasper, DA 1994Phosphorus soluble carbohydrates and the competition between two arbuscular mycorrhizal fungi colonizing subterranean clover.New Phytol127101106Google Scholar
  29. 29.
    Plank, CO 1992Reference Plant Analysis Procedures for the Southern Region of the United StatesSouthern Co-operative SeriesBulletin No. 368Google Scholar
  30. 30.
    Querejeta, JI, Roldán, A, Albaladejo, J, Castillo, V 1998The role of mycorrhizae, site preparation, and organic amendment in the afforestation of a semi-arid Mediterranean site with Pinus halepensis.Forest Sci43203211Google Scholar
  31. 31.
    Read, DJ (1992) “The mycorrhizal mycelium.” In: Allen, MJ (Ed.), Mycorrhizal Functioning. An Integrative Plant–Fungal Process, Chapman & Hall, London, pp 102–133Google Scholar
  32. 32.
    Requena, N, Pérez-Solis, E, Azcón-Aguilar, C, Jeffries, P, Barea, JM 2001Management of indigenous plant–microbe symbioses aids restoration of desertified ecosystems.Appl Environ Microbiol67495498CrossRefPubMedGoogle Scholar
  33. 33.
    Rodríguez, R, Vassilev, N, Azcón, R 1999Increases in growth and nutrient uptake of alfalfa grown in soil amended with microbially-treated sugar beet waste.Appl Soil Ecol11915CrossRefGoogle Scholar
  34. 34.
    Roldán, A, Albaladejo, J 1994Effect of mycorrhizal inoculation and soil restoration on the growth of Pinus halepensis seedlings in a semiarid soil.Biol Fertil Soils18143149CrossRefGoogle Scholar
  35. 35.
    Schollemberger, CJ, Simon, RH 1954Determination of exchange capacity and exchangeable bases in soils.Soil Sci591324Google Scholar
  36. 36.
    Sims, J, Haby, V 1971Simplified colorimetric determination of soil organic matter.Soil Sci112137141Google Scholar
  37. 37.
    Soil Survey Staff (1999) Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. USDA Natural Resources Conservation Service, Agric Hdbk 436. US Government Printing Office, Washington, DCGoogle Scholar
  38. 38.
    Tabatabai, MA (1982) “Soil enzymes.” In: Page, AL, Miller, EM, Keeney, DR (Eds.), Methods of Soil Analysis, Part II, ASA and SSSA, Madison, pp 501–538Google Scholar
  39. 39.
    Tabatabai, MA, Bremner, JM 1969Use of p-nitrophenol phosphate in assay of soil phosphatase activity.Soil Biol Biochem1301307Google Scholar
  40. 40.
    Torres, P, Roldán, A, Lansac, AR, Martín, A 1995Ectomycorrhizal formation between Cistus ladanifer and Laccaria laccata.Nova Hedwigia60311315Google Scholar
  41. 41.
    Vance, ED, Brookes, PC, Jenkinson, D 1987An extraction method for measuring microbial biomass carbon.Soil Biol Biochem19703707CrossRefGoogle Scholar
  42. 42.
    Vassilev, N, Baca, MT, Vassileva, M, Franco, I, Azcón, R 1995Rock phosphate solubilization by Aspergillus niger grown on sugar-beet waste medium.Appl Microbiol Biotechnol44546549Google Scholar
  43. 43.
    Vassilev, N, Baca, MT, Vassileva, M, Franco, I, De Nobili, M (1998) “Mineralization of three agro-industrial wastes by an acid-producing strain of Aspergillus niger.” In: De Bertoldi, M, Sequi, P, Lenunes, B, Papi, T (Eds.), The Science of Composting, Chapman and Hall, London, pp 1375–1379Google Scholar
  44. 44.
    Vassilev, N, Franco, I, Vassileva, M, Azcón, R 1996Improved plant growth with rock phosphate solubilized by Aspergillus niger grown on sugar beet waste.Bioresource Technol55237241Google Scholar
  45. 45.
    Wenkart, S, Roth-Bejerano, N, Mills, D, Kagan-Zur, V 2001Mycorrhizal associations between Tuber melanosporum mycelia and transformed roots of Cistus incanus.Plant Cell Reprod20369373Google Scholar
  46. 46.
    Yanai, RD, Fahey, TJ, Miller, SL (1995) “Efficiency of nutrient acquisition by fine roots and mycorrhizae.” In: Smith, WK, Hinckley, TM (Eds.), Resource Physiology of Conifers: Acquisition, Allocation, and Utilization, Academic Press, London, pp 75–103Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • F. Caravaca
    • 1
  • M.M. Alguacil
    • 1
  • R. Azcón
    • 2
  • J. Parladé
    • 3
  • P. Torres
    • 4
  • A. Roldán
    • 1
  1. 1.Department of Soil and Water ConservationCSIC-Centro de Edafología y Biología Aplicada del SeguraMurciaSpain
  2. 2.Microbiology DepartmentCSIC-Estación Experimental del ZaidínGranadaSpain
  3. 3.Department of Plant PathologyIRTA—Centre de CabrilsCabrilsSpain
  4. 4.Department of Applied BiologyUniversidad Miguel Hernández de ElcheElcheSpain

Personalised recommendations