Advertisement

Microbial Ecology

, Volume 46, Issue 4, pp 454–464 | Cite as

Population Dynamics of Gluconacetobacter diazotrophicus in Sugarcane Cultivars and Its Effect on Plant Growth

  • J. Muñoz-Rojas
  • J. Caballero-MelladoEmail author
Article

Abstract

Different experiments have estimated that the contribution of biological nitrogen fixation (BNF) is largely variable among sugarcane cultivars. Which bacteria are the most important in sugarcane-associated BNF is unknown. However, Gluconacetobacter diazotrophicus has been suggested as a strong candidate responsible for the BNF observed. In the present study, bacteria-free micropropagated plantlets of five sugarcane cultivars were inoculated with three G. diazotrophicus strains belonging to different genotypes. Bacterial colonization was monitored under different nitrogen fertilization levels and at different stages of plant growth. Analysis of the population dynamics of G. diazotrophicus strains in the different sugarcane varieties showed that the bacterial populations decreased drastically in relation to plant age, regardless of the nitrogen fertilization level, bacterial genotype or sugarcane cultivars. However, the persistence of the three strains was significantly longer in some cultivars (e.g., MEX 57-473) than in others (e.g., MY 55-14). In addition, some strains (e.g., PAl 5T) persisted for longer periods in higher numbers than other strains (e.g., PAl 3) inside plants of all the cultivars tested. Indeed, the study showed that the inoculation of G. diazotrophicus may be beneficial for sugarcane plant growth, but this response is dependent both on the G. diazotrophicus genotype and the sugarcane variety. The most positive response to inoculation was observed with the combination of strain PAl 5T and the variety MEX 57-473. Although the positive effect on sugarcane growth apparently occurred by mechanisms other than nitrogen fixation, the results show the importance of the sugarcane variety for the persistence of the plant–bacteria interaction, and it could explain the different rates of BNF estimated among sugarcane cultivars.

Keywords

Sugarcane Endophytic Bacterium Biological Nitrogen Fixation Sugarcane Variety Sugarcane Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are indebted to Dr. Michael Dunn for constructive English corrections, and Dr. Maria Valdés for valuable opinions on the work. Jesús Muñoz-Rojas was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT)-México and by Dirección General de Estudios de Posgrado (DGEP)-UNAM.

References

  1. 1.
    Asis Jr, CA, Kubota, M, Chebotar, VK, Ohta, H, Arima, Y, Nishiyama, K, Tsuchiya, KI, Akao, S 2000Endophytic bacterial population in Philippine sugarcane cultivars and isolation of nitrogen-fixing strains.Microbes Environ15209216CrossRefGoogle Scholar
  2. 2.
    Baldani, JI, Caruso, L, Baldani, VLD, Got, SR, Döbereiner, J 1997Recent advances in BNF with non-legume plants.Soil Biol Biochem29911922CrossRefGoogle Scholar
  3. 3.
    Bastian, F, Cohen, A, Piccoli, P, Luna, V, Baraldi, R, Bottini, R 1998Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media.Plant Growth Reg24711CrossRefGoogle Scholar
  4. 4.
    Boddey, RM, De Oliveira, OC, Urquiaga, S, Reis, VM, De Olivares, FL, Baldani, VLD, Döbereiner, J 1995Biological nitrogen fixation associated with sugarcane and rice: contributions and prospects for improvement.Plant Soil174195209Google Scholar
  5. 5.
    Boddey, RM, Urquiaga, S, Reis, V, Döbereiner, J 1991Biological nitrogen fixation associated with sugarcane.Plant Soil137111117Google Scholar
  6. 6.
    Bremmer, JM 1965Total nitrogen.Black, CA eds. Methods of Soil Analysis, Part 2, Agronomy 9.American Society of AgronomyMadison, WI11491178Google Scholar
  7. 7.
    Caballero-Mellado, J, Fuentes-Ramírez, LE, Reis, VM, Martínez-Romero, E 1995Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group.Appl Environ Microbiol6130083013Google Scholar
  8. 8.
    Caballero-Mellado, J, Martínez-Romero, E 1994Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus.Appl Environ Microbiol6015321537Google Scholar
  9. 9.
    Cavalcante, VA, Döbereiner, J 1988A new acid-tolerant nitrogen fixing bacterium associated with sugarcane.Plant Soil1082331Google Scholar
  10. 10.
    Chaughule, RS, Ranade, SS, Shah, NC 2000Magnetic resonance imaging (MRI) of Saccharum officinarum L. (sugarcane) during its growth for sucrose content.Indian J Exp Biol3810621065Google Scholar
  11. 11.
    Döbereiner, J, Reis, VM, Paula, MA, Olivares, FL 1993Endophytes diazotrophs in sugarcane, cereals and tuber plants. Curr Plant Sci Biotechnol Agric17671676Google Scholar
  12. 12.
    Dong, Z, Canny, MJ, McCully, ME, Roboredo, MR, Cavadilla, CF, Ortega, E, Rodés, R 1994A nitrogen-fixing endophyte of sugarcane stems. A new role for the apoplast.Plant Physiol10511391147PubMedGoogle Scholar
  13. 13.
    Fuentes-Ramírez, LE, Jiménez-Salgado, T, Abarca-Ocampo, IR, Caballero-Mellado, J 1993 Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico.Plant Soil154145150Google Scholar
  14. 14.
    Fuentes-Ramírez, LE, Caballero-Mellado, J, Sepúlveda, J, Martinez-Romero, E 1999Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization.FEMS Microbiol Ecol29117128Google Scholar
  15. 15.
    Gyaneshwar, P, James, EK, Reddy, PM, Ladha, JK 2002 Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties.New Phytol154131145CrossRefGoogle Scholar
  16. 16.
    Heinz, DJ, Mee, GWP 1969Plant differentiation from callus tissue of Saccharum species.Crop Sci9316318Google Scholar
  17. 17.
    Hynes, MF, McGregor, NF 1990Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen fixing nodules by Rhizobium leguminosarum.Mol Microbiol4567574PubMedGoogle Scholar
  18. 18.
    James, EK 2000Nitrogen fixation in endophytic and associative symbiosis.Field Crops Res65197209CrossRefGoogle Scholar
  19. 19.
    James, EK, Olivares, FL, De Oliveira, ALM, Dos Reis Jr, FB, Da Silva, LG, Reis, VM 2001Further observations on the interaction between sugarcane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions.J Exp Bot52747760PubMedGoogle Scholar
  20. 20.
    James, EK, Gyaneshwar, P, Barraquio, WL, Mathan, N, Ladha, JK 2000Endophytic diazotrophs associated with rice.Ladha, JKReddy, PM eds. The Quest for Nitrogen Fixation in RiceLos BañosLaguna, Philippines119140Google Scholar
  21. 21.
    James, EK, Reis, VM, Olivares, FL, Baldani, JI, Döbereiner, J 1994Infection of sugarcane by the nitrogen-fixing bacterium Acetobacter diazotrophicus.J Exp Bot45757766Google Scholar
  22. 22.
    Jimenez-Salgado, T, Fuentes-Ramirez, LE, Tapia-Hernandez, A, Mascarua-Esparza, MA, Martinez-Romero, E, Caballero-Mellado, J 1997 Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.Appl Environ Microbiol6336763683Google Scholar
  23. 23.
    Lima, E, Boddey, RM, Döbereiner, J 1987Quantification of biological nitrogen fixation associated with sugarcane using a 15N aided nitrogen balance.Soil Biol Biochem19165170CrossRefGoogle Scholar
  24. 24.
    Lingle, SE 1999Sugar metabolism during growth and development in sugarcane internodes.Crop Sci39480486Google Scholar
  25. 25.
    Loganathan, P, Sunlta, R, Parlda, AK, Nair, S 1999Isolation and characterization of two genetically distant groups of Acetobacter diazotrophicus from a new host plant Eleusine coracana L.J Appl Microbiol87167172Google Scholar
  26. 26.
    Moore, PH, Cosgrove, DJ 1991Developmental changes in cell and tissue water relation parameters in storage parenchyma of sugarcane.Plant Physiol96794801PubMedGoogle Scholar
  27. 27.
    Murashige, T, Skoog, F 1962A revised medium for rapid growth and bio-assays with tobacco tissue cultures.Physiol Plant15473Google Scholar
  28. 28.
    Muthukumarasamy, R, Revathi, G, Lakshminarasimhan, C 1999Influence of N fertilization on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties.Biol Fertil Soils29157164CrossRefGoogle Scholar
  29. 29.
    Muthukumarasamy, R, Revathi, G, Loganathan, P 2002Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus).Plant Soil24391102CrossRefGoogle Scholar
  30. 30.
    Nogueira, EM, Vinagre, F, Masuda, HP, Vargas, C, Muniz de Pádua, VL, Da Silva, FR, Dos Santos, RV, Baldani, JI, Ferreira, PCG, Hemerly, AS 2001Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans.Gen Mol Biol24199206Google Scholar
  31. 31.
    Olivares, FL, Baldani, VLD, Reis, VM, Baldani, JI, Döbereiner, J 1996Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of gramineae.Biol Fertil Soils21197200CrossRefGoogle Scholar
  32. 32.
    Oliveira, ALM, Urquiaga, S, Döbereiner, J, Baldani, JI 2002The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants.Plant Soil242205215CrossRefGoogle Scholar
  33. 33.
    Pelaez, AI, De Armas Urquiza, R, Valadier, M-H, Champigny, ML 1994Short-term effect of nitrate on carbon metabolism of two sugarcane cultivars differing in their biomass production.Phytochemistry36819833CrossRefGoogle Scholar
  34. 34.
    Pieterse, CM, van Loon, LC 1999Salicylic acid-independent plant defense pathways.Trends Plant Sci45258PubMedGoogle Scholar
  35. 35.
    Reinhold-Hurek, B, Hurek, T 1998Life in grasses: diazotrophic endophytes.Trends Microbiol6139144PubMedGoogle Scholar
  36. 36.
    Reis dos Jr, FB, Reis, VM, Urquiaga, S, Döbereiner, J 2000Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugar cane (Saccharum spp.).Plant Soil219153159CrossRefGoogle Scholar
  37. 37.
    Reis, VM, Olivares, FL, De Oliveira, ALM, Dos Reis Jr, FB, Baldani, JI, Döbereiner, J 1999Technical approaches to inoculate micropropagated sugarcane plants with Acetobacter diazotrophicus.Plant Soil206205211CrossRefGoogle Scholar
  38. 38.
    Reis, VM, Olivares, FL, Döbereiner, J 1994Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat.World J Microbiol Biotechnol10401405Google Scholar
  39. 39.
    Rodríguez-Cáceres, E 1982Improved medium for isolation of Azospirillum spp.Appl Environ Microbiol44990991Google Scholar
  40. 40.
    Ruschel, AP 1981Associative N2-fixation by sugarcane.Vose, PBRuschel, AP eds. Associative N2-Fixation, vol 2,CRC PressBoca Raton, FL8190Google Scholar
  41. 41.
    Sevilla, M, Burris, RH, Gunapala, N, Kennedy, C 2001Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif mutant strains.Mol Plant-Microb Interact14358366Google Scholar
  42. 42.
    Sevilla, M, Kennedy, C 2000Genetic Analysis of nitrogen fixation and plant-growth stimulating properties of Acetobacter diazotrophicus, an endophyte of sugarcane.Triplett, EW eds. Prokaryotic Nitrogen Fixation: A Model System for the Analysis of a Biological Process.Horizon Scientific PressWymondham, UK737760Google Scholar
  43. 43.
    Tapia-Hernández, A, Bustillos-Cristales, MR, Jiménez-Salgado, T, Caballero-Mellado, J, Fuentes-Ramírez, LE 2000Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants.Microb Ecol394955Google Scholar
  44. 44.
    Teixeira, KRS, Galler, R, Kennedy, C, Baldani, JI 1994Plasmid contents and nif genes detection in Acetobacter diazotrophicus strains.Hegazi, NAFayes, MMonib, . eds. Nitrogen Fixation with Non-legumesThe American University in Cairo Press273281Google Scholar
  45. 45.
    Urquiaga, S, Cruz, KHS, Boddey, RM 1992Contribution of nitrogen fixation to sugarcane: Nitrogen-15 and nitrogen-balance estimates.Soil Sci Soc Am J56105114Google Scholar
  46. 46.
    Yoneyama, T, Muraoka, T, Kim, TH, Dacanay, EV, Nakanishi, Y 1997The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan).Plant Soil189239244CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Programa de Ecología Molecular y Microbiana, Centro de Investigación sobre Fijación de NitrógenoUniversidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, MorelosMéxico

Personalised recommendations