Microbial Ecology

, Volume 46, Issue 1, pp 113–121 | Cite as

Genetic Characterization of the Nitrate Reducing Community Based on narG Nucleotide Sequence Analysis

  • D. Chèneby
  • S. Hallet
  • M. Mondon
  • F. Martin-Laurent
  • J. C. Germon
  • L. PhilippotEmail author


The ability of facultative anerobes to respire nitrate has been ascribed mainly to the activity of a membrane-bound nitrate reductase encoded by the narGHJI operon. Respiratory nitrate reduction is the first step of the denitrification pathway, which is considered as an important soil process since it contributes to the global cycling of nitrogen. In this study, we employed direct PCR, cloning, and sequencing of narG gene fragments to determine the diversity of nitrate-reducing bacteria occurring in soil and in the maize rhizosphere. Libraries containing 727 clones in total were screened by restriction fragment analysis. Phylogenetic analysis of 128 narG sequences separated the clone families into two main groups that represent the Gram-positive and Gram-negative nitrate-reducing bacteria. Novel narG lineages that branch distinctly from all currently known membrane bound nitrate-reductase encoding genes were detected within the Gram-negative branch. All together, our results revealed a more complex nitrate-reducing community than did previous culture-based studies. A significant and consistent shift in the relative abundance of the nitrate-reducing groups within this functional community was detected in the maize rhizosphere. Thus a substantially higher abundance of the dominant clone family and a lower diversity index were observed in the rhizosphere compared to the unplanted soil, suggesting that a bacterial group has been specifically selected within the nitrate-reducing community. Furthermore, restriction fragment length polymorphism analysis of cloned narG gene fragments proved to be a powerful tool in evaluating the structure and the diversity of the nitrate-reducing community and community shifts therein.


Nitrate Reductase Rhizospheric Soil Functional Community Unplanted Soil Restriction Fragment Length Polymorphism Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the PNSE program “rhizosphere bioreactor” of the Institut National des Sciences de l’Univers and the Burgundy region program B03725.


  1. 1.
    Blösl, M, Conrad, R 1992Influence of an increased pH on the composition of the nitrate-reducing microbial populations in an anaerobically incubated acidic forest soil.Syst Appl Microbiol15624627Google Scholar
  2. 2.
    Braker, G, Ayala-del-Rio, HL, Devol, AH, Fesefeldt, A, Tiedje, JM 2001Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes.Appl Environ Microbiol6718931901PubMedGoogle Scholar
  3. 3.
    Braker, G, Fesefeldt, A, Witzel, KP 1998Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples.Appl Environ Microbiol6437693775Google Scholar
  4. 4.
    Braker, G, Zhou, J, Wu, L, Devol, AH, Tiedje, JM 2000Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities.Appl Environ Microbiol6620962104PubMedGoogle Scholar
  5. 5.
    Brunel, B, Janse, JD, Laanbroek, HJ, Woldendorp, JD 1992Effect of transient oxic conditions on the composition of the nitrate-reducing community from the rhizosphere of Typha angustipholia.Microbiol Ecol245161Google Scholar
  6. 6.
    Cavigelli, MA, Robertson, GP 2001Role of denitrifiers diversity in rates of nitrous oxide consumption in a terrestrial ecosystem.Soil Biol Biochem33297310Google Scholar
  7. 7.
    Cheneby, D, Philippot, L, Hartmann, A, Henault, C, Germon, JC 200016S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils.FEMS Microbiol Ecol34121128PubMedGoogle Scholar
  8. 8.
    Clays-Josserand, A, Ghiglione, JF, Philippot, L, Lemanceau, P, Lensi, R 1999Effect of soil type and plant species on the fluorescent pseudomonads nitrate dissimilating community.Plant Soil209275282Google Scholar
  9. 9.
    Gamble, TN, Betlach, HR, Tiedje, JM 1977Numerically dominant denitrifying bacteria from world soils.Appl Environ Microbiol33926939Google Scholar
  10. 10.
    Gregory, LG, Karakas-Sen, A, Richardson, DJ, Spiro, S 2000Detection of genes for membrane-bound nitrate reductase in nitrate-respiring bacteria and in community DNA.FEMS Microbiol Lett183275279PubMedGoogle Scholar
  11. 11.
    Hallin, S, Lindgren, PE 1999PCR detection of genes encoding nitrite reductase in denitrifying bacteria.Appl Environ Microbiol6516521657Google Scholar
  12. 12.
    Head, IM, Saunders, JR, Pickup, RW 1998Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms.Microb Ecol35121PubMedGoogle Scholar
  13. 13.
    MacFarlane, GT, Herbert, RA 1982Nitrate dissimilation by Vibrio spp. isolated from estuarine sediments.J Gen Microbiol12824632468Google Scholar
  14. 14.
    Martin-Laurent, F, Philippot, L, Hallet, S, Chaussod, R, Germon, JC, Soulas, G, Catroux, G 2001DNA extraction from soils: old bias for new microbial diversity analysis methods.Appl Environ Microbiol6723542359PubMedGoogle Scholar
  15. 15.
    Nijburg, J, Coolen, MJL, Gerards, S, Gunnewiek, PJAK, Lannbroek, HJ 1997Effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacteria community.Appl Environ Microbiol63931937Google Scholar
  16. 16.
    Nijburg, J, Hendrikus, J, Lannbroek, HJ 1997The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacteria community.FEMS Microbiol Ecol225763Google Scholar
  17. 17.
    Petri, R, Imhoff, JF 2000The relationship of nitrate reducing bacteria on the basis of narH gene sequences and comparison of narH and 16S rDNA based phylogeny.Syst Appl Microbiol234757PubMedGoogle Scholar
  18. 18.
    Philippot, L 2002Denitrifying genes in Bacterial and Archeal genomes.Biochim Biophys Acta1577355376PubMedGoogle Scholar
  19. 19.
    Philippot, L, Hojberg, O 1999Dissimilatory nitrate reductases in bacteria.Biochim Biophys Acta1446123PubMedGoogle Scholar
  20. 20.
    Philippot, L, Piutti, S, Martin-Laurent, F, Hallet, S, Germon, JC 2002Molecular analysis of the nitrate-reducing community from unplanted and maize planted soil.Appl Environ Microbiol6861216128PubMedGoogle Scholar
  21. 21.
    Prieme, A, Braker, G, Tiedje, JM 2002Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils.Appl Environ Microbiol6818931900PubMedGoogle Scholar
  22. 22.
    Rosch, C, Mergel, A, Bothe, H 2002Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil.Appl Environ Microbiol6838183829PubMedGoogle Scholar
  23. 23.
    Rovira, AD, Dougall, BMM 1967Microbiological and biochemical aspects of the rhizosphere.McLaren, ADPetersen, GH eds. Soil Biochemistry.Marcel DekkerNew York417463Google Scholar
  24. 24.
    Sakano, Y, Pickering, KD, Strom, PF, Kerkhof, LJ 2002Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support.Appl Environ Microbiol6822852293PubMedGoogle Scholar
  25. 25.
    Scala, DJ, Kerkhof, LJ 1999Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments.Appl Environ Microbiol6516811687PubMedGoogle Scholar
  26. 26.
    Scala, DJ, Kerkhof, LJ 2000Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis.Appl Environ Microbiol6619801986PubMedGoogle Scholar
  27. 27.
    Scala, DJ, Kerkhof, LJ 1998Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments.FEMS Microbiol Lett1626168PubMedGoogle Scholar
  28. 28.
    Shirey, JJ, Sextone, AJ 1989Denitrification and nitrate-reducing bacterial populations in abandoned and reclaimed minesoils.FEMS Microb Ecol625970Google Scholar
  29. 29.
    Simpson, EH 1949Measurement of diversity.Nature163688Google Scholar
  30. 30.
    Smith, MS, Zimmerman, K 1981Nitrous oxide production by nondenitrifying soil nitrate reducers.Soil Sci Soc Am J45865871Google Scholar
  31. 31.
    Smith, S, Tiedje, JM 1979The effect of roots on soil denitrification.Soil Sci Soc Am J43951955Google Scholar
  32. 32.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res2448764882CrossRefGoogle Scholar
  33. 33.
    Tiedje, JM 1988Ecology of denitrification and dissimilatory nitrate reduction to ammonium.Zehuder, A eds. Biology of Anaerobic Microorganisms.John Wiley & SonsNew York179244Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • D. Chèneby
    • 1
  • S. Hallet
    • 1
  • M. Mondon
    • 1
  • F. Martin-Laurent
    • 1
  • J. C. Germon
    • 1
  • L. Philippot
    • 1
    Email author
  1. 1.UMR A111 Microbiologie des Sols, GéosolsInstitut National de la Recherche Agronomique, 17, rue Sully, B.P. 86510, 21065 Dijon CedexFrance

Personalised recommendations